622 research outputs found
Fast computation of magnetostatic fields by Non-uniform Fast Fourier Transforms
The bottleneck of micromagnetic simulations is the computation of the
long-ranged magnetostatic fields. This can be tackled on regular N-node grids
with Fast Fourier Transforms in time N logN, whereas the geometrically more
versatile finite element methods (FEM) are bounded to N^4/3 in the best case.
We report the implementation of a Non-uniform Fast Fourier Transform algorithm
which brings a N logN convergence to FEM, with no loss of accuracy in the
results
Braess's Paradox in Wireless Networks: The Danger of Improved Technology
When comparing new wireless technologies, it is common to consider the effect
that they have on the capacity of the network (defined as the maximum number of
simultaneously satisfiable links). For example, it has been shown that giving
receivers the ability to do interference cancellation, or allowing transmitters
to use power control, never decreases the capacity and can in certain cases
increase it by , where is the
ratio of the longest link length to the smallest transmitter-receiver distance
and is the maximum transmission power. But there is no reason to
expect the optimal capacity to be realized in practice, particularly since
maximizing the capacity is known to be NP-hard. In reality, we would expect
links to behave as self-interested agents, and thus when introducing a new
technology it makes more sense to compare the values reached at game-theoretic
equilibria than the optimum values.
In this paper we initiate this line of work by comparing various notions of
equilibria (particularly Nash equilibria and no-regret behavior) when using a
supposedly "better" technology. We show a version of Braess's Paradox for all
of them: in certain networks, upgrading technology can actually make the
equilibria \emph{worse}, despite an increase in the capacity. We construct
instances where this decrease is a constant factor for power control,
interference cancellation, and improvements in the SINR threshold (),
and is when power control is combined with interference
cancellation. However, we show that these examples are basically tight: the
decrease is at most O(1) for power control, interference cancellation, and
improved , and is at most when power control is
combined with interference cancellation
Dimension of the Torelli group for Out(F_n)
Let T_n be the kernel of the natural map from Out(F_n) to GL(n,Z). We use
combinatorial Morse theory to prove that T_n has an Eilenberg-MacLane space
which is (2n-4)-dimensional and that H_{2n-4}(T_n,Z) is not finitely generated
(n at least 3). In particular, this recovers the result of Krstic-McCool that
T_3 is not finitely presented. We also give a new proof of the fact, due to
Magnus, that T_n is finitely generated.Comment: 27 pages, 9 figure
Sensitivity of wardrop equilibria
We study the sensitivity of equilibria in the well-known game theoretic traffic model due to Wardrop. We mostly consider single-commodity networks. Suppose, given a unit demand flow at Wardrop equilibrium, one increases the demand by ε or removes an edge carrying only an ε-fraction of flow. We study how the equilibrium responds to such an ε-change.
Our first surprising finding is that, even for linear latency functions, for every ε> 0, there are networks in which an ε-change causes every agent to change its path in order to recover equilibrium. Nevertheless, we can prove that, for general latency functions, the flow increase or decrease on every edge is at most ε.
Examining the latency at equilibrium, we concentrate on polynomial latency functions of degree at most p with nonnegative coefficients. We show that, even though the relative increase in the latency of an edge due to an ε-change in the demand can be unbounded, the path latency at equilibrium increases at most by a factor of (1 + ε) p . The increase of the price of anarchy is shown to be upper bounded by the same factor. Both bounds are shown to be tight.
Let us remark that all our bounds are tight. For the multi-commodity case, we present examples showing that neither the change in edge flows nor the change in the path latency can be bounded
Markov Chain Methods For Analyzing Complex Transport Networks
We have developed a steady state theory of complex transport networks used to
model the flow of commodity, information, viruses, opinions, or traffic. Our
approach is based on the use of the Markov chains defined on the graph
representations of transport networks allowing for the effective network
design, network performance evaluation, embedding, partitioning, and network
fault tolerance analysis. Random walks embed graphs into Euclidean space in
which distances and angles acquire a clear statistical interpretation. Being
defined on the dual graph representations of transport networks random walks
describe the equilibrium configurations of not random commodity flows on
primary graphs. This theory unifies many network concepts into one framework
and can also be elegantly extended to describe networks represented by directed
graphs and multiple interacting networks.Comment: 26 pages, 4 figure
Self-intersection local times of random walks: Exponential moments in subcritical dimensions
Fix , not necessarily integer, with . We study the -fold
self-intersection local time of a simple random walk on the lattice up
to time . This is the -norm of the vector of the walker's local times,
. We derive precise logarithmic asymptotics of the expectation of
for scales that are bounded from
above, possibly tending to zero. The speed is identified in terms of mixed
powers of and , and the precise rate is characterized in terms of
a variational formula, which is in close connection to the {\it
Gagliardo-Nirenberg inequality}. As a corollary, we obtain a large-deviation
principle for for deviation functions satisfying
t r_t\gg\E[\|\ell_t\|_p]. Informally, it turns out that the random walk
homogeneously squeezes in a -dependent box with diameter of order to produce the required amount of self-intersections. Our main tool is
an upper bound for the joint density of the local times of the walk.Comment: 15 pages. To appear in Probability Theory and Related Fields. The
final publication is available at springerlink.co
Finite Element Convergence for the Joule Heating Problem with Mixed Boundary Conditions
We prove strong convergence of conforming finite element approximations to
the stationary Joule heating problem with mixed boundary conditions on
Lipschitz domains in three spatial dimensions. We show optimal global
regularity estimates on creased domains and prove a priori and a posteriori
bounds for shape regular meshes.Comment: Keywords: Joule heating problem, thermistors, a posteriori error
analysis, a priori error analysis, finite element metho
- …
