241 research outputs found
Post-hoc derivation of SOHO Michelson doppler imager flat fields
<p><b>Context:</b> The SOHO satellite now offers a unique perspective on the Sun as it is the only space-based instrument that can provide large, high-resolution data sets over an entire 11-year solar cycle. This unique property enables detailed studies of long-term variations in the Sun. One significant problem when looking for such changes is determining what component of any variation is due to deterioration of the instrument and what is due to the Sun itself. One of the key parameters that changes over time is the apparent sensitivity of individual pixels in the CCD array. This can change considerably as a result of optics damage, radiation damage, and aging of the sensor itself. In addition to reducing the sensitivity of the telescope over time, this damage significantly changes the uniformity of the flat field of the instrument, a property that is very hard to recalibrate in space. For procedures such as feature tracking and intensity analysis, this can cause significant errors.</p>
<p><b>Aims:</b> We present a method for deriving high-precision flat fields for high-resolution MDI continuum data, using analysis of existing continuum and magnetogram data sets.</p>
<p><b>Methods:</b> A flat field is constructed using a large set (1000-4000 frames) of cospatial magnetogram and continuum data. The magnetogram data is used to identify and mask out magnetically active regions on the continuum data, allowing systematic biases to be avoided. This flat field can then be used to correct individual continuum images from a similar time.</p>
<p><b>Results:</b> This method allows us to reduce the residual flat field error by around a factor 6-30, depending on the area considered, enough to significantly change the results from correlation-tracking analysis. One significant advantage of this method is that it can be done retrospectively using archived data, without requiring any special satellite operations.</p>
The Horizontal Component of Photospheric Plasma Flows During the Emergence of Active Regions on the Sun
The dynamics of horizontal plasma flows during the first hours of the
emergence of active region magnetic flux in the solar photosphere have been
analyzed using SOHO/MDI data. Four active regions emerging near the solar limb
have been considered. It has been found that extended regions of Doppler
velocities with different signs are formed in the first hours of the magnetic
flux emergence in the horizontal velocity field. The flows observed are
directly connected with the emerging magnetic flux; they form at the beginning
of the emergence of active regions and are present for a few hours. The Doppler
velocities of flows observed increase gradually and reach their peak values
4-12 hours after the start of the magnetic flux emergence. The peak values of
the mean (inside the +/-500 m/s isolines) and maximum Doppler velocities are
800-970 m/s and 1410-1700 m/s, respectively. The Doppler velocities observed
substantially exceed the separation velocities of the photospheric magnetic
flux outer boundaries. The asymmetry was detected between velocity structures
of leading and following polarities. Doppler velocity structures located in a
region of leading magnetic polarity are more powerful and exist longer than
those in regions of following polarity. The Doppler velocity asymmetry between
the velocity structures of opposite sign reaches its peak values soon after the
emergence begins and then gradually drops within 7-12 hours. The peak values of
asymmetry for the mean and maximal Doppler velocities reach 240-460 m/s and
710-940 m/s, respectively. An interpretation of the observable flow of
photospheric plasma is given.Comment: 20 pages, 10 figures, 3 tables. The results of article were presented
at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102,
P.4.12,
http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf
Second-Order Belief Hidden Markov Models
Hidden Markov Models (HMMs) are learning methods for pattern recognition. The
probabilistic HMMs have been one of the most used techniques based on the
Bayesian model. First-order probabilistic HMMs were adapted to the theory of
belief functions such that Bayesian probabilities were replaced with mass
functions. In this paper, we present a second-order Hidden Markov Model using
belief functions. Previous works in belief HMMs have been focused on the
first-order HMMs. We extend them to the second-order model
The Relationship Between Plasma Flow Doppler Velocities and Magnetic Field Parameters During the Emergence of Active Regions at the Solar Photospheric Level
A statistical study has been carried out of the relationship between plasma
flow Doppler velocities and magnetic field parameters during the emergence of
active regions at the solar photospheric level with data acquired by the
Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory
(SOHO). We have investigated 224 emerging active regions with different spatial
scales and positions on the solar disc. The following relationships for the
first hours of the emergence of active regions have been analysed: i) of peak
negative Doppler velocities with the position of the emerging active regions on
the solar disc; ii) of peak plasma upflow and downflow Doppler velocities with
the magnetic flux growth rate and magnetic field strength for the active
regions emerging near the solar disc centre (the vertical component of plasma
flows); iii) of peak positive and negative Doppler velocities with the magnetic
flux growth rate and magnetic field strength for the active regions emerging
near the limb (the horizontal component of plasma flows); iv) of the magnetic
flux growth rate with the density of emerging magnetic flux; v) of the Doppler
velocities and magnetic field parameters for the first hours of the appearance
of active regions with the total unsigned magnetic flux at the maximum of their
development.Comment: 14 pages, 8 figures. The results of article were presented at the
ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102-103,
P.4.13,
http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf
Positive words carry less information than negative words
We show that the frequency of word use is not only determined by the word
length \cite{Zipf1935} and the average information content
\cite{Piantadosi2011}, but also by its emotional content. We have analyzed
three established lexica of affective word usage in English, German, and
Spanish, to verify that these lexica have a neutral, unbiased, emotional
content. Taking into account the frequency of word usage, we find that words
with a positive emotional content are more frequently used. This lends support
to Pollyanna hypothesis \cite{Boucher1969} that there should be a positive bias
in human expression. We also find that negative words contain more information
than positive words, as the informativeness of a word increases uniformly with
its valence decrease. Our findings support earlier conjectures about (i) the
relation between word frequency and information content, and (ii) the impact of
positive emotions on communication and social links.Comment: 16 pages, 3 figures, 3 table
Structural Invariance of Sunspot Umbrae Over the Solar Cycle: 1993-2004
Measurements of maximum magnetic flux, minimum intensity, and size are
presented for 12 967 sunspot umbrae detected on the NASA/NSO
spectromagnetograms between 1993 and 2004 to study umbral structure and
strength during the solar cycle. The umbrae are selected using an automated
thresholding technique. Measured umbral intensities are first corrected for a
confirming observation of umbral limb-darkening. Log-normal fits to the
observed size distribution confirm that the size spectrum shape does not vary
with time. The intensity-magnetic flux relationship is found to be steady over
the solar cycle. The dependence of umbral size on the magnetic flux and minimum
intensity are also independent of cycle phase and give linear and quadratic
relations, respectively. While the large sample size does show a low amplitude
oscillation in the mean minimum intensity and maximum magnetic flux correlated
with the solar cycle, this can be explained in terms of variations in the mean
umbral size. These size variations, however, are small and do not substantiate
a meaningful change in the size spectrum of the umbrae generated by the Sun.
Thus, in contrast to previous reports, the observations suggest the equilibrium
structure, as testified by the invariant size-magnetic field relationship, as
well as the mean size (i.e. strength) of sunspot umbrae do not significantly
depend on solar cycle phase.Comment: 17 pages, 6 figures. Published in Solar Physic
Resolving the infinitude controversy
A simple inductive argument shows natural languages to have infinitly many sentences, but workers in the field have uncovered clear evidence of a diverse group of ‘exceptional’ languages from Proto-Uralic to Dyirbal and most recently, Pirahã, that appear to lack recursive devices entirely. We argue that in an information-theoretic setting non-recursive natural languages appear neither exceptional nor functionally inferior to the recursive majority
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
The Effects of Media and their Logic on Legitimacy Sources within Local Governance Networks: A Three-Case Comparative Study
__Abstract__
Although theoretical and empirical work on the democratic legitimacy of
governance networks is growing, little attention has been paid to the impact of mediatisation
on democracies. Media have their own logic of news-making led by the media’s rules,
aims, production routines and constraints, which affect political decision-making processes.
In this article, we specifically study how media and their logic affect three
democratic legitimacy sources of political decision-making within governance networks:
voice, due deliberation and accountability. We conducted a comparative case study of
three local governance networks using a mixed method design, combining extensive
qualitative case studies, interviews and a quantitative content analysis of media reports.
In all three cases, media logic increased voice possibilities for citizen groups.
Furthermore, it broadened the deliberation process, although this did not improve the
quality of this process per se, because the media focus on drama and negativity. Finally,
media logic often pushed political authorities into a reactive communication style as they
had to fight against negative images in the media. Proactive communication about
projects, such as public relation (PR) strategies and branding, is difficult in such a
media landscape
- …
