488 research outputs found

    On Tachyon kinks from the DBI action

    Full text link
    We consider solitonic solutions of the DBI tachyon effective action for a non-BPS brane in the presence of an electric field. We find that for a constant electric field E~1\tilde E\le 1, regular solitons compactified on a circle admit a singular and decompactified limit corresponding to Sen's proposal provided the tachyon potential satisfies some restrictions. On the other hand for the critical electric field E~=1\tilde E=1, regular and finite energy solitons are constructed without any restriction on the potential.Comment: proceedings of the second string phenomenology conference, Durham, 30th July to 4th August 200

    Gauge Coupling Variation in Brane Models

    Full text link
    We consider the space-time variation of gauge couplings in brane-world models induced by the coupling to a bulk scalar field. A variation is generated by the running of the gauge couplings with energy and a conformal anomaly while going from the Jordan to the Einstein frame. We indicate that the one-loop corrections cancel implying that one obtains a variation of the fine structure constant by either directly coupling the gauge fields to the bulk scalar field or having bulk scalar field dependent Yukawa couplings. Taking into account the cosmological dynamics of the bulk scalar field, we constrain the strength of the gauge coupling dependence on the bulk scalar field and relate it to modifications of gravity at low energy.Comment: 4 pages, 1 figur

    Secular increase of the Astronomical Unit and perihelion precessions as tests of the Dvali-Gabadadze-Porrati multi-dimensional braneworld scenario

    Full text link
    An unexpected secular increase of the Astronomical Unit, the length scale of the Solar System, has recently been reported by three different research groups (Krasinsky and Brumberg, Pitjeva, Standish). The latest JPL measurements amount to 7+-2 m cy^-1. At present, there are no explanations able to accommodate such an observed phenomenon, neither in the realm of classical physics nor in the usual four-dimensional framework of the Einsteinian General Relativity. The Dvali-Gabadadze-Porrati braneworld scenario, which is a multi-dimensional model of gravity aimed to the explanation of the observed cosmic acceleration without dark energy, predicts, among other things, a perihelion secular shift, due to Lue and Starkman, of 5 10^-4 arcsec cy^-1 for all the planets of the Solar System. It yields a variation of about 6 m cy^-1 for the Earth-Sun distance which is compatible at 1-sigma level with the observed rate of the Astronomical Unit. The recently measured corrections to the secular motions of the perihelia of the inner planets of the Solar System are in agreement, at 1-sigma level, with the predicted value of the Lue-Starkman effect for Mercury and Mars and at 2-sigma level for the Earth.Comment: LaTex2e, 7 pages, no figures, no tables, 13 references. Minor correction

    Galaxy clustering in 3D and modified gravity theories

    Get PDF
    We study Modified Gravity (MG) theories by modelling the redshifted matter power spectrum in a spherical Fourier-Bessel (sFB) basis. We use a fully non-linear description of the real-space matter power-spectrum and include the lowest-order redshift-space correction (Kaiser effect), taking into account some additional non-linear contributions. Ignoring relativistic corrections, which are not expected to play an important role for a shallow survey, we analyse two different modified gravity scenarios, namely the generalised Dilaton scalar-tensor theories and the f(R) models in the large curvature regime. We compute the 3D power spectrum C s ℓ (k 1 ,k 2 ) for various such MG theories with and without redshift space distortions, assuming precise knowledge of background cosmological parameters. Using an all-sky spectroscopic survey with Gaussian selection function φ(r)∝exp(−r 2 /r 2 0 ) , r 0 =150h −1 Mpc , and number density of galaxies N ¯ =10 −4 Mpc −3 , we use a χ 2 analysis, and find that the lower-order (ℓ≤25) multipoles of C s ℓ (k,k ′ ) (with radial modes restricted to k25 modes can further reduce the error bars and thus in principle make cosmological gravity constraints competitive with solar system tests. However this will require an accurate modelling of non-linear redshift space distortions. Using a tomographic β(a) -m(a) parameterization we also derive constraints on specific parameters describing the Dilaton models of modified gravity

    Perturbation Theory in k-Inflation Coupled to Matter

    Full text link
    We consider k-inflation models where the action is a non-linear function of both the inflaton and the inflaton kinetic term. We focus on a scalar-tensor extension of k-inflation coupled to matter for which we derive a modified Mukhanov-Sasaki equation for the curvature perturbation. Significant corrections to the power spectrum appear when the coupling function changes abruptly along the inflationary trajectory. This gives rise to a modification of Starobinsky's model of perturbation features. We analyse the way the power spectrum is altered in the infrared when such features are present.Comment: 20 pages, 1 figur

    Fluctuating brane in a dilatonic bulk

    Get PDF
    We consider a cosmological brane moving in a static five-dimensional bulk spacetime endowed with a scalar field whose potential is exponential. After studying various cosmological behaviours for the homogeneous background, we investigate the fluctuations of the brane that leave spacetime unaffected. A single mode embodies these fluctuations and obeys a wave equation which we study for bouncing and ever-expanding branes.Comment: 17 pages, 7 figures, revte

    Moduli-Space Approximation for BPS Brane-Worlds

    Full text link
    We develop the moduli-space approximation for the low energy regime of BPS-branes with a bulk scalar field to obtain an effective four-dimensional action describing the system. An arbitrary BPS potential is used and account is taken of the presence of matter in the branes and small supersymmetry breaking terms. The resulting effective theory is a bi-scalar tensor theory of gravity. In this theory, the scalar degrees of freedom can be stabilized naturally without the introduction of additional mechanisms other than the appropriate BPS potential. We place observational constraints on the shape of the potential and the global configuration of branes.Comment: 10 pages, 1 figur

    Brane Bremsstrahlung in DBI Inflation

    Full text link
    We consider the effect of trapped branes on the evolution of a test brane whose motion generates DBI inflation along a warped throat. The coupling between the inflationary brane and a trapped brane leads to the radiation of non-thermal particles on the trapped brane. We calculate the Gaussian spectrum of the radiated particles and their backreaction on the DBI motion of the inflationary brane. Radiation occurs for momenta lower than the speed of the test brane when crossing the trapped brane. The slowing down effect is either due to a parametric resonance when the interaction time is small compared to the Hubble time or a tachyonic resonance when the interaction time is large. In both cases the motion of the inflationary brane after the interaction is governed by a chameleonic potential,which tends to slow it down. We find that a single trapped brane can hardly slow down a DBI inflaton whose fluctuations lead to the Cosmic Microwave Background spectrum. A more drastic effect is obtained when the DBI brane encounters a tightly spaced stack of trapped branes.Comment: 20 pages, 1 figur

    Dynamical Evolution of the Extra Dimension in Brane Cosmology

    Full text link
    The evolution of the extra dimension is investigated in the context of brane world cosmology. New cosmological solutions are found. In particular, solutions in the form of waves travelling along the extra dimension are identified.Comment: Latex file, 10 page
    corecore