204 research outputs found
Computational Controversy
Climate change, vaccination, abortion, Trump: Many topics are surrounded by
fierce controversies. The nature of such heated debates and their elements have
been studied extensively in the social science literature. More recently,
various computational approaches to controversy analysis have appeared, using
new data sources such as Wikipedia, which help us now better understand these
phenomena. However, compared to what social sciences have discovered about such
debates, the existing computational approaches mostly focus on just a few of
the many important aspects around the concept of controversies. In order to
link the two strands, we provide and evaluate here a controversy model that is
both, rooted in the findings of the social science literature and at the same
time strongly linked to computational methods. We show how this model can lead
to computational controversy analytics that have full coverage over all the
crucial aspects that make up a controversy.Comment: In Proceedings of the 9th International Conference on Social
Informatics (SocInfo) 201
Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease involving the cerebellum and characterized by a typical motor syndrome. In addition, the presence of cognitive impairment is now widely acknowledged as a feature of SCA2. Given the extensive connections between the cerebellum and associative cerebral areas, it is reasonable to hypothesize that cerebellar neurodegeneration associated with SCA2 may impact on the cerebellar modulation of the cerebral cortex, thus resulting in functional impairment. The aim of the present study was to investigate and quantitatively map the pattern of cerebellar gray matter (GM) atrophy due to SCA2 neurodegeneration and to correlate that with patients' cognitive performances. Cerebellar GM maps were extracted and compared between SCA2 patients (n = 9) and controls (n = 33) by using voxel-based morphometry. Furthermore, the relationship between cerebellar GM atrophy and neuropsychological scores of the patients was assessed. Specific cerebellar GM regions were found to be affected in patients. Additionally, GM loss in cognitive posterior lobules (VI, Crus I, Crus II, VIIB, IX) correlated with visuospatial, verbal memory and executive tasks, while additional correlations with motor anterior (V) and posterior (VIIIA, VIIIB) lobules were found for the tasks engaging motor and planning components. Our results provide evidence that the SCA2 neurodegenerative process affects the cerebellar cortex and that MRI indices of atrophy in different cerebellar subregions may account for the specificity of cognitive symptomatology observed in patients, as result of a cerebello-cerebral dysregulation
Serotonin-immunoreactivity in the ventral nerve cord of Pycnogonida – support for individually identifiable neurons as ancestral feature of the arthropod nervous system
The Kafkaesque Pursuit of ‘World Class’: Audit Culture and the Reputational Arms Race in Academia
Since the 1980s universities have been subjected to a seemingly continuous process of policy reforms designed to make them more economical, efficient and effective, according to yardsticks defined by governments and university managers. The pursuit of ‘excellence’, ‘international standing’ and ‘world class’ status have become key drivers of what Hazelkorn (High Educ Pol 21(2):193–215, 2008) has termed the ‘rankings arms race’ that now dominates the world of academia. These policies are changing the mission and meaning of the public university and, more profoundly, the culture of academia itself. While some authors have sought to capture and analyse these trends in terms of ‘academic capitalism’ and the ‘enterprise university model’, we suggest they might also be usefully understood theoretically as illustrations of the rise of audit culture in higher education and its effects. Drawing on ethnographic examples from the UK, Denmark and New Zealand, we ask: how are higher education institutions being reconfigured by these new disciplinary regimes of audit? How are ranking and performance indicators changing institutional behaviour and transforming academic subjectivities? What possibilities are there for alternative university futures? And what insights can anthropology offer to address these questions
Overview of IFMIF-DONES diagnostics: Requirements and techniques
The IFMIF-DONES Facility is a unique first-class scientific infrastructure whose construction is foreseen in Granada, Spain, in the coming years. Strong integration efforts are being made at the current project phase aiming at harmonizing the ongoing design of the different and complex Systems of the facility. The consolidation of the Diagnostics and Instrumentation, transversal across many of them, is a key element of this purpose. A top-down strategy is proposed for a systematic Diagnostics Review and Requirement definition, putting emphasis in the one-of-a-kind instruments necessary by the operational particularities of some of the Systems, as well as to the harsh environment that they shall survive. In addition, other transversal aspects such as the ones related to Safety and Machine Protection and their respective requirements shall be also considered. The goal is therefore to advance further and solidly in the respective designs, identify problems in advance, and steer the Diagnostics development and validation campaigns that will be required. The present work provides an overview of this integration strategy as well as a description of some of the most challenging Diagnostics and Instruments within the facility, including several proposed techniques currently under study
Overview of IFMIF-DONES diagnostics: Requirements and techniques
The IFMIF-DONES Facility is a unique first-class scientific infrastructure whose construction is foreseen in Granada, Spain, in the coming years. Strong integration efforts are being made at the current project phase aiming at harmonizing the ongoing design of the different and complex Systems of the facility. The consolidation of the Diagnostics and Instrumentation, transversal across many of them, is a key element of this purpose. A top-down strategy is proposed for a systematic Diagnostics Review and Requirement definition, putting emphasis in the one-of-a-kind instruments necessary by the operational particularities of some of the Systems, as well as to the harsh environment that they shall survive. In addition, other transversal aspects such as the ones related to Safety and Machine Protection and their respective requirements shall be also considered. The goal is therefore to advance further and solidly in the respective designs, identify problems in advance, and steer the Diagnostics development and validation campaigns that will be required. The present work provides an overview of this integration strategy as well as a description of some of the most challenging Diagnostics and Instruments within the facility, including several proposed techniques currently under study
Ultrafast electronic read-out of diamond NV centers coupled to graphene
Nonradiative transfer processes are often regarded as loss channels for an
optical emitter1, since they are inherently difficult to be experimentally
accessed. Recently, it has been shown that emitters, such as fluorophores and
nitrogen vacancy centers in diamond, can exhibit a strong nonradiative energy
transfer to graphene. So far, the energy of the transferred electronic
excitations has been considered to be lost within the electron bath of the
graphene. Here, we demonstrate that the trans-ferred excitations can be
read-out by detecting corresponding currents with picosecond time resolution.
We electrically detect the spin of nitrogen vacancy centers in diamond
electronically and con-trol the nonradiative transfer to graphene by electron
spin resonance. Our results open the avenue for incorporating nitrogen vacancy
centers as spin qubits into ultrafast electronic circuits and for harvesting
non-radiative transfer processes electronically
Optical Coherence Tomography in Parkinsonian Syndromes
BACKGROUND/OBJECTIVE: Parkinson's disease (PD) and the atypical parkinsonian syndromes multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are movement disorders associated with degeneration of the central nervous system. Degeneration of the retina has not been systematically compared in these diseases. METHODS: This cross-sectional study used spectral-domain optical coherence tomography with manual segmentation to measure the peripapillar nerve fiber layer, the macular thickness, and the thickness of all retinal layers in foveal scans of 40 patients with PD, 19 with MSA, 10 with CBS, 15 with PSP, and 35 age- and sex-matched controls. RESULTS: The mean paramacular thickness and volume were reduced in PSP while the mean RNFL did not differ significantly between groups. In PSP patients, the complex of retinal ganglion cell- and inner plexiform layer and the outer nuclear layer was reduced. In PD, the inner nuclear layer was thicker than in controls, MSA and PSP. Using the ratio between the outer nuclear layer and the outer plexiform layer with a cut-off at 3.1 and the additional constraint that the inner nuclear layer be under 46 µm, we were able to differentiate PSP from PD in our patient sample with a sensitivity of 96% and a specificity of 70%. CONCLUSION: Different parkinsonian syndromes are associated with distinct changes in retinal morphology. These findings may serve to facilitate the differential diagnosis of parkinsonian syndromes and give insight into the degenerative processes of patients with atypical parkinsonian syndromes
- …
