448 research outputs found

    Vanishing viscosity limits for the degenerate lake equations with Navier boundary conditions

    Full text link
    The paper is concerned with the vanishing viscosity limit of the two-dimensional degenerate viscous lake equations when the Navier slip conditions are prescribed on the impermeable boundary of a simply connected bounded regular domain. When the initial vorticity is in the Lebesgue space LqL^q with 2<q2<q\le\infty, we show the degenerate viscous lake equations possess a unique global solution and the solution converges to a corresponding weak solution of the inviscid lake equations. In the special case when the vorticity is in LL^\infty, an explicit convergence rate is obtained

    Compressible primitive equation: formal derivation and stability of weak solutions

    Get PDF
    We present a formal derivation of a simplified version of Compressible Primitive Equations (CPEs) for atmosphere modeling. They are obtained from 33-D compressible Navier-Stokes equations with an \emph{anisotropic viscous stress tensor} where viscosity depends on the density. We then study the stability of the weak solutions of this model by using an intermediate model, called model problem, which is more simple and practical, to achieve the main result

    Prediction-Based Control of Linear Systems by Compensating Input-Dependent Input Delay of Integral-Type

    No full text
    International audienceThis study addresses the problem of delay compensation via a predictor-based output feedback for a class of linear systems subject to input delay which itself depends on the input. The equation defining the delay is implicit and involves past values of the input through an integral relation, the kernel of which is a polynomial function of the input. This modeling represents systems where transport phenomena take place at the inlet of a system involving a nonlinearity, which frequently occurs in the processing industry. The conditions of asymptotic stabilization require the magnitude of the feedback gain to comply with the initial conditions. Arguments for the proof of this novel result include general Halanay inequalities for delay differential equations and take advantage of recent advances in backstepping techniques for uncertain or varying delay systems

    Existence of global strong solutions in critical spaces for barotropic viscous fluids

    Get PDF
    This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N2N\geq2. We address the question of the global existence of strong solutions for initial data close from a constant state having critical Besov regularity. In a first time, this article show the recent results of \cite{CD} and \cite{CMZ} with a new proof. Our result relies on a new a priori estimate for the velocity, where we introduce a new structure to \textit{kill} the coupling between the density and the velocity as in \cite{H2}. We study so a new variable that we call effective velocity. In a second time we improve the results of \cite{CD} and \cite{CMZ} by adding some regularity on the initial data in particular ρ0\rho_{0} is in H1H^{1}. In this case we obtain global strong solutions for a class of large initial data on the density and the velocity which in particular improve the results of D. Hoff in \cite{5H4}. We conclude by generalizing these results for general viscosity coefficients

    Weak solutions to problems involving inviscid fluids

    Full text link
    We consider an abstract functional-differential equation derived from the pressure-less Euler system with variable coefficients that includes several systems of partial differential equations arising in the fluid mechanics. Using the method of convex integration we show the existence of infinitely many weak solutions for prescribed initial data and kinetic energy
    corecore