448 research outputs found
Vanishing viscosity limits for the degenerate lake equations with Navier boundary conditions
The paper is concerned with the vanishing viscosity limit of the
two-dimensional degenerate viscous lake equations when the Navier slip
conditions are prescribed on the impermeable boundary of a simply connected
bounded regular domain. When the initial vorticity is in the Lebesgue space
with , we show the degenerate viscous lake equations
possess a unique global solution and the solution converges to a corresponding
weak solution of the inviscid lake equations. In the special case when the
vorticity is in , an explicit convergence rate is obtained
Compressible primitive equation: formal derivation and stability of weak solutions
We present a formal derivation of a simplified version of Compressible
Primitive Equations (CPEs) for atmosphere modeling. They are obtained from
-D compressible Navier-Stokes equations with an \emph{anisotropic viscous
stress tensor} where viscosity depends on the density. We then study the
stability of the weak solutions of this model by using an intermediate model,
called model problem, which is more simple and practical, to achieve the main
result
Prediction-Based Control of Linear Systems by Compensating Input-Dependent Input Delay of Integral-Type
International audienceThis study addresses the problem of delay compensation via a predictor-based output feedback for a class of linear systems subject to input delay which itself depends on the input. The equation defining the delay is implicit and involves past values of the input through an integral relation, the kernel of which is a polynomial function of the input. This modeling represents systems where transport phenomena take place at the inlet of a system involving a nonlinearity, which frequently occurs in the processing industry. The conditions of asymptotic stabilization require the magnitude of the feedback gain to comply with the initial conditions. Arguments for the proof of this novel result include general Halanay inequalities for delay differential equations and take advantage of recent advances in backstepping techniques for uncertain or varying delay systems
Existence of global strong solutions in critical spaces for barotropic viscous fluids
This paper is dedicated to the study of viscous compressible barotropic
fluids in dimension . We address the question of the global existence
of strong solutions for initial data close from a constant state having
critical Besov regularity. In a first time, this article show the recent
results of \cite{CD} and \cite{CMZ} with a new proof. Our result relies on a
new a priori estimate for the velocity, where we introduce a new structure to
\textit{kill} the coupling between the density and the velocity as in
\cite{H2}. We study so a new variable that we call effective velocity. In a
second time we improve the results of \cite{CD} and \cite{CMZ} by adding some
regularity on the initial data in particular is in . In this
case we obtain global strong solutions for a class of large initial data on the
density and the velocity which in particular improve the results of D. Hoff in
\cite{5H4}. We conclude by generalizing these results for general viscosity
coefficients
Weak solutions to problems involving inviscid fluids
We consider an abstract functional-differential equation derived from the
pressure-less Euler system with variable coefficients that includes several
systems of partial differential equations arising in the fluid mechanics. Using
the method of convex integration we show the existence of infinitely many weak
solutions for prescribed initial data and kinetic energy
- …
