1,345 research outputs found
Recommended from our members
Corpus-Based Transcription as an Approach to the Compositional Control of Timbre
Timbre space is a cognitive model useful to address the problem of structuring timbre in electronic music. The recent concept of corpus-based concatenative sound synthesis is proposed as an approach to timbral control in both real- and deferred-time applications. Using CataRT and related tools in the FTM and Gabor libraries for Max/MSP we describe a technique for real-time analysis of a live signal to pilot corpus-based synthesis, along with examples of compositional realizations in works for instruments, electronics, and sound installation. To extend this technique to computer-assisted composition for acoustic instruments, we develop tools using the Sound Description Interchange Format (SDIF) to export sonic descriptors to OpenMusic where they may be further manipulated and transcribed into an instrumental score. This presents a flexible technique for the compositional organization of noise-based instrumental sounds
The Eyes of the Beholder: does responsibility for the lack of quality screenplays really lie at the door of inadequately trained screenwriters?
The relative lack of success for British films in the marketplace is often cited as being rooted in the lack of quality screenplays. As the primary strategic body for film in Britain, the UK Film Council subscribes to this broad analysis and has identified training as one of the key strategies for overcoming this weakness. In this article, I question this assumption and examine to what extent the decision-makers, and the processes of decision-making, themselves are a problem in the development of talent and quality British films
The Total Filmmaker: thinking of screenwriting, directing and editing as one role
As screenwriting continues to establish itself as a discrete discipline in academia, either in alignment with creative writing departments or film and media practice departments, there is a danger that such developments may entrench a distancing of the craft from the cinematic form itself and that such a distancing may ultimately reinforce the screenplay's propensity for dramaturgy and the dramatic, rather than the sensory and experiential of the cinematic. Closely related creative stages in telling cinematic stories include directing and editing and this article seeks to argue, with reference to personal screen practice, that screenwriting, directing and editing are, in fact, three variations of the same thing. The article proposes the notion of the Total Filmmaker who embraces all three aspects of the cinematic storyteller. If the ultimate aim is to create a narrative that fully utilises the unique properties of the cinematic form in telling a story, rather than being dominated by the theatricality of dramatically driven classical narratives. How might one explore the relationship between screenwriting, directing and editing? Can an integrated approach to creating the cinematic blueprint change the way we think of pedagogy and screenwriting
Group Diffie-Hellman Key Exchange Secure against Dictionary Attacks
Group Diffie-Hellman schemes for password-based key exchange are designed to provide a pool of players communicating over a public network, and sharing just a human-memorable password, with a session key (e.g, the key is used for multicast data integrity and confidentiality) . The fundamental security goal to achieve in this scenario is security against dictionary attacks. While solutions have been proposed to solve this problem no formal treatment has ever been suggested. In this paper, we define a security model and then present a protocol with its security proof in both the random oracle model and the ideal-cipher model
Nondestructive measurement of the roughness of the inner surface of hollow core-photonic bandgap fibers
We present optical and atomic force microscopy measurements of the roughness of the core wall surface within a hollow core photonic bandgap fiber (HC-PBGF) over the [3×10-2 µm-1 to 30 µm-1] spatial frequency range. A recently developed immersion optical profilometry technique with picometer-scale sensitivity was used to measure the roughness of air-glass surfaces inside the fiber at unprecedentedly low spatial frequencies, which are known to have the highest impact on HC-PBGF scattering loss and, thus, determine their loss limit. Optical access to the inner surface of the core was obtained by the selective filling of the cladding holes with index matching liquid using techniques borrowed from micro-fluidics. Both measurement techniques reveal ultralow roughness levels exhibiting a 1/f spectral power density dependency characteristic of frozen surface capillary waves over a broad spatial frequency range. However, a deviation from this behavior at low spatial frequencies was observed for the first time, to the best of our knowledge
Dynamic Group Diffie-Hellman Key Exchange under Standard Assumptions
Authenticated Diffie-Hellman key exchange allows two principals communicating over a public network, and each holding public /private keys, to agree on a shared secret value. In this paper we study the natural extension of this cryptographic problem to a group of principals. We begin from existing formal security models and refine them to incorporate major missing details (e.g., strong-corruption and concurrent sessions). Within this model we define the execution of a protocol for authenticated dynamic group Diffie-Hellman and show that it is provably secure under the decisional Diffie-Hellman assumption. Our security result holds in the standard model and thus provides better security guarantees than previously published results in the random oracle model
First AMBER/VLTI observations of hot massive stars
AMBER is the first near infrared focal instrument of the VLTI. It combines
three telescopes and produces spectrally resolved interferometric measures.
This paper discusses some preliminary results of the first scientific
observations of AMBER with three Unit Telescopes at medium (1500) and high
(12000) spectral resolution. We derive a first set of constraints on the
structure of the circumstellar material around the Wolf Rayet Gamma2 Velorum
and the LBV Eta Carinae
Universally Convertible Directed Signatures
Many variants of Chaum and van Antwerpen's undeniable signatures have been proposed to achieve specific properties desired in real-world applications of cryptography. Among them, directed signatures were introduced by Lim and Lee in 1993. Directed signatures differ from the well-known confirmer signatures in that the signer has the simultaneous abilities to confirm, deny and individually convert a signature. The universal conversion of these signatures has remained an open problem since their introduction in 1993. This paper provides a positive answer to this quest by showing a very efficient design for universally convertible directed signatures (UCDS) both in terms of computational complexity and signature size. Our construction relies on the so-called xyz-trick applicable to bilinear map groups. We define proper security notions for UCDS schemes and show that our construction is secure, in the random oracle model, under computational assumptions close to the CDH and DDH assumptions. Finally, we introduce and realize traceable universally convertible directed signatures where a master tracing key allows to link signatures to their direction
An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status
MATISSE is the second-generation mid-infrared spectrograph and imager for the
Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric
instrument will allow significant advances by opening new avenues in various
fundamental research fields: studying the planet-forming region of disks around
young stellar objects, understanding the surface structures and mass loss
phenomena affecting evolved stars, and probing the environments of black holes
in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the
spectral domain of current optical interferometers by offering the L and M
bands in addition to the N band. This will open a wide wavelength domain,
ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band)
/ 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared
imaging - closure-phase aperture-synthesis imaging - with up to four Unit
Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE
will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we
present one of the main science objectives, the study of protoplanetary disks,
that has driven the instrument design and motivated several VLTI upgrades
(GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a
description of the signal on the detectors and an evaluation of the expected
performances. We also discuss the current status of the MATISSE instrument,
which is entering its testing phase, and the foreseen schedule for the next two
years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June
2016, 11 pages, 6 Figure
Solving the Uncalibrated Photometric Stereo Problem using Total Variation
International audienceIn this paper we propose a new method to solve the problem of uncalibrated photometric stereo, making very weak assumptions on the properties of the scene to be reconstructed. Our goal is to solve the generalized bas-relief ambiguity (GBR) by performing a total variation regularization of both the estimated normal field and albedo. Unlike most of the previous attempts to solve this ambiguity, our approach does not rely on any prior information about the shape or the albedo, apart from its piecewise smoothness. We test our method on real images and obtain results comparable to the state-of-the-art algorithms
- …
