840 research outputs found

    Translations in the exponential Orlicz space with Gaussian weight

    Full text link
    We study the continuity of space translations on non-parametric exponential families based on the exponential Orlicz space with Gaussian reference density.Comment: Submitted to GSI 2017, Pari

    Phase transition in a log-normal Markov functional model

    Full text link
    We derive the exact solution of a one-dimensional Markov functional model with log-normally distributed interest rates in discrete time. The model is shown to have two distinct limiting states, corresponding to small and asymptotically large volatilities, respectively. These volatility regimes are separated by a phase transition at some critical value of the volatility. We investigate the conditions under which this phase transition occurs, and show that it is related to the position of the zeros of an appropriately defined generating function in the complex plane, in analogy with the Lee-Yang theory of the phase transitions in condensed matter physics.Comment: 9 pages, 5 figures. v2: Added asymptotic expressions for the convexity-adjusted Libors in the small and large volatility limits. v3: Added one reference. Final version to appear in Journal of Mathematical Physic

    Derivative pricing for a multi-curve extension of the Gaussian, exponentially quadratic short rate model

    Get PDF
    The recent financial crisis has led to so-called multi-curve models for the term structure. Here we study a multi-curve extension of short rate models where, in addition to the short rate itself, we introduce short rate spreads. In particular, we consider a Gaussian factor model where the short rate and the spreads are second order polynomials of Gaussian factor processes. This leads to an exponentially quadratic model class that is less well known than the exponentially affine class. In the latter class the factors enter linearly and for positivity one considers square root factor processes. While the square root factors in the affine class have more involved distributions, in the quadratic class the factors remain Gaussian and this leads to various advantages, in particular for derivative pricing. After some preliminaries on martingale modeling in the multi-curve setup, we concentrate on pricing of linear and optional derivatives. For linear derivatives, we exhibit an adjustment factor that allows one to pass from pre-crisis single curve values to the corresponding post-crisis multi-curve values

    Yield Curve Shapes and the Asymptotic Short Rate Distribution in Affine One-Factor Models

    Full text link
    We consider a model for interest rates, where the short rate is given by a time-homogenous, one-dimensional affine process in the sense of Duffie, Filipovic and Schachermayer. We show that in such a model yield curves can only be normal, inverse or humped (i.e. endowed with a single local maximum). Each case can be characterized by simple conditions on the present short rate. We give conditions under which the short rate process will converge to a limit distribution and describe the limit distribution in terms of its cumulant generating function. We apply our results to the Vasicek model, the CIR model, a CIR model with added jumps and a model of Ornstein-Uhlenbeck type

    Pricing and Hedging Asian Basket Options with Quasi-Monte Carlo Simulations

    Get PDF
    In this article we consider the problem of pricing and hedging high-dimensional Asian basket options by Quasi-Monte Carlo simulation. We assume a Black-Scholes market with time-dependent volatilities and show how to compute the deltas by the aid of the Malliavin Calculus, extending the procedure employed by Montero and Kohatsu-Higa (2003). Efficient path-generation algorithms, such as Linear Transformation and Principal Component Analysis, exhibit a high computational cost in a market with time-dependent volatilities. We present a new and fast Cholesky algorithm for block matrices that makes the Linear Transformation even more convenient. Moreover, we propose a new-path generation technique based on a Kronecker Product Approximation. This construction returns the same accuracy of the Linear Transformation used for the computation of the deltas and the prices in the case of correlated asset returns while requiring a lower computational time. All these techniques can be easily employed for stochastic volatility models based on the mixture of multi-dimensional dynamics introduced by Brigo et al. (2004).Comment: 16 page

    Quantum projection filter for a highly nonlinear model in cavity QED

    Get PDF
    Both in classical and quantum stochastic control theory a major role is played by the filtering equation, which recursively updates the information state of the system under observation. Unfortunately, the theory is plagued by infinite-dimensionality of the information state which severely limits its practical applicability, except in a few select cases (e.g. the linear Gaussian case.) One solution proposed in classical filtering theory is that of the projection filter. In this scheme, the filter is constrained to evolve in a finite-dimensional family of densities through orthogonal projection on the tangent space with respect to the Fisher metric. Here we apply this approach to the simple but highly nonlinear quantum model of optical phase bistability of a stongly coupled two-level atom in an optical cavity. We observe near-optimal performance of the quantum projection filter, demonstrating the utility of such an approach.Comment: 19 pages, 6 figures. A version with high quality images can be found at http://minty.caltech.edu/papers.ph

    Coherent chaos interest-rate models

    Get PDF
    Electronic version of an article published as International Journal of Theoretical and Applied Finance, 18, 3, 2015, pp. 1550016. doi:10.1142/S0219024915500168 © copyright World Scientific Publishing Company, https://www.worldscientific.com/doi/abs/10.1142/S0219024915500168The Wiener chaos approach to interest-rate modeling arises from the observation that in the general context of an arbitrage-free model with a Brownian filtration, the pricing kernel admits a representation in terms of the conditional variance of a square-integrable generator, which in turn admits a chaos expansion. When the expansion coefficients of the random generator factorize into multiple copies of a single function, the resulting interest-rate model is called «coherent», whereas a generic interest-rate model is necessarily «incoherent». Coherent representations are of fundamental importance because an incoherent generator can always be expressed as a linear superposition of coherent elements. This property is exploited to derive general expressions for the pricing kernel and the associated bond price and short rate processes in the case of a generic nth order chaos model, for eachn N. Pricing formulae for bond options and swaptions are obtained in closed form for a number of examples. An explicit representation for the pricing kernel of a generic incoherent model is then obtained by use of the underlying coherent elements. Finally, finite-dimensional realizations of coherent chaos models are investigated and we show that a class of highly tractable models can be constructed having the characteristic feature that the discount bond price is given by a piecewise-flat (simple) process

    Nonparametric Information Geometry

    Full text link
    The differential-geometric structure of the set of positive densities on a given measure space has raised the interest of many mathematicians after the discovery by C.R. Rao of the geometric meaning of the Fisher information. Most of the research is focused on parametric statistical models. In series of papers by author and coworkers a particular version of the nonparametric case has been discussed. It consists of a minimalistic structure modeled according the theory of exponential families: given a reference density other densities are represented by the centered log likelihood which is an element of an Orlicz space. This mappings give a system of charts of a Banach manifold. It has been observed that, while the construction is natural, the practical applicability is limited by the technical difficulty to deal with such a class of Banach spaces. It has been suggested recently to replace the exponential function with other functions with similar behavior but polynomial growth at infinity in order to obtain more tractable Banach spaces, e.g. Hilbert spaces. We give first a review of our theory with special emphasis on the specific issues of the infinite dimensional setting. In a second part we discuss two specific topics, differential equations and the metric connection. The position of this line of research with respect to other approaches is briefly discussed.Comment: Submitted for publication in the Proceedings od GSI2013 Aug 28-30 2013 Pari

    The importance of dynamic risk constraints for limited liability operators

    Get PDF
    Previous literature shows that prevalent risk measures such as value at risk or expected shortfall are ineffective to curb excessive risk-taking by a tail-risk-seeking trader with S-shaped utility function in the context of portfolio optimisation. However, these conclusions hold only when the constraints are static in the sense that the risk measure is just applied to the terminal portfolio value. In this paper, we consider a portfolio optimisation problem featuring S-shaped utility and a dynamic risk constraint which is imposed throughout the entire trading horizon. Provided that the risk control policy is sufficiently strict relative to the Sharpe ratio of the asset, the trader’s portfolio strategies and the resulting maximal expected utility can be effectively constrained by a dynamic risk measure. Finally, we argue that dynamic risk constraints might still be ineffective if the trader has access to a derivatives market
    corecore