2,594 research outputs found
Stochastic thermodynamics for Ising chain and symmetric exclusion process
We verify the finite time fluctuation theorem for a linear Ising chain at its
ends in contact with heat reservoirs. Analytic results are derived for a chain
consisting of only two spins. The system can be mapped onto a model for
particle transport, namely the symmetric exclusion process, in contact with
thermal and particle reservoirs. We modify the symmetric exclusion process to
represent a thermal engine and reproduce universal features of the efficiency
at maximum power
Extracting chemical energy by growing disorder: Efficiency at maximum power
We consider the efficiency of chemical energy extraction from the environment
by the growth of a copolymer made of two constituent units in the
entropy-driven regime. We show that the thermodynamic nonlinearity associated
with the information processing aspect is responsible for a branching of the
system properties such as power, speed of growth, entropy production, and
efficiency, with varying affinity. The standard linear thermodynamics argument
which predicts an efficiency of 1/2 at maximum power is inappropriate because
the regime of maximum power is located either outside of the linear regime or
on a separate bifurcated branch, and because the usual thermodynamic force is
not the natural variable for this optimization.Comment: 6 pages, 4 figure
A `warp drive' with more reasonable total energy requirements
I show how a minor modification of the Alcubierre geometry can dramatically
improve the total energy requirements for a `warp bubble' that can be used to
transport macroscopic objects. A spacetime is presented for which the total
negative mass needed is of the order of a few solar masses, accompanied by a
comparable amount of positive energy. This puts the warp drive in the mass
scale of large traversable wormholes. The new geometry satisfies the quantum
inequality concerning WEC violations and has the same advantages as the
original Alcubierre spacetime.Comment: 9 pages, 1 figure; error in calculation correcte
Analytic calculation of energy transfer and heat flux in a one-dimensional system
In the context of the problem of heat conduction in one-dimensional systems,
we present an analytical calculation of the instantaneous energy transfer
across a tagged particle in a one-dimensional gas of equal-mass, hard-point
particles. From this, we obtain a formula for the steady-state energy flux, and
identify and separate the mechanical work and heat conduction contributions to
it. The nature of the Fourier law for the model, and the nonlinear dependence
of the rate of mechanical work on the stationary drift velocity of the tagged
particle, are analyzed and elucidated.Comment: 17 pages including title pag
Fluctuation theorem for entropy production during effusion of a relativistic ideal gas
The probability distribution of the entropy production for the effusion of a
relativistic ideal gas is calculated explicitly. This result is then extended
to include particle and anti-particle pair production and annihilation. In both
cases, the fluctuation theorem is verified.Comment: 6 pages, no figure
Effective-one-body waveforms for binary neutron stars using surrogate models
Gravitational-wave observations of binary neutron star systems can provide
information about the masses, spins, and structure of neutron stars. However,
this requires accurate and computationally efficient waveform models that take
<1s to evaluate for use in Bayesian parameter estimation codes that perform
10^7 - 10^8 waveform evaluations. We present a surrogate model of a nonspinning
effective-one-body waveform model with l = 2, 3, and 4 tidal multipole moments
that reproduces waveforms of binary neutron star numerical simulations up to
merger. The surrogate is built from compact sets of effective-one-body waveform
amplitude and phase data that each form a reduced basis. We find that 12
amplitude and 7 phase basis elements are sufficient to reconstruct any binary
neutron star waveform with a starting frequency of 10Hz. The surrogate has
maximum errors of 3.8% in amplitude (0.04% excluding the last 100M before
merger) and 0.043 radians in phase. The version implemented in the LIGO
Algorithm Library takes ~0.07s to evaluate for a starting frequency of 30Hz and
~0.8s for a starting frequency of 10Hz, resulting in a speed-up factor of ~10^3
- 10^4 relative to the original Matlab code. This allows parameter estimation
codes to run in days to weeks rather than years, and we demonstrate this with a
Nested Sampling run that recovers the masses and tidal parameters of a
simulated binary neutron star system.Comment: 17 pages, 11 figures, submitted to PR
Spurious diffusion in particle simulations of the Kolmogorov flow
Particle simulations of the Kolmogorov flow are analyzed by the
Landau-Lifshitz fluctuating hydrodynamics. It is shown that a spurious
diffusion of the center of mass corrupts the statistical properties of the
flow. The analytical expression for the corresponding diffusion coefficient is
derived.Comment: 10 pages, no figure
Reconstructing Colonization Dynamics of the Human Parasite Schistosoma mansoni following Anthropogenic Environmental Changes in Northwest Senegal
© 2015 Van den Broeck et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Determination of Dark Energy by the Einstein Telescope: Comparing with CMB, BAO and SNIa Observations
A design study is currently in progress for a third generation
gravitational-wave (GW) detector called Einstein Telescope (ET). An important
kind of source for ET will be the inspiral and merger of binary neutron stars
(BNS) up to . If BNS mergers are the progenitors of short-hard
-ray bursts, then some fraction of them will be seen both
electromagnetically and through GW, so that the luminosity distance and the
redshift of the source can be determined separately. An important property of
these `standard sirens' is that they are \emph{self-calibrating}: the
luminosity distance can be inferred directly from the GW signal, with no need
for a cosmic distance ladder. Thus, standard sirens will provide a powerful
independent check of the CDM model. In previous work, estimates were
made of how well ET would be able to measure a subset of the cosmological
parameters (such as the dark energy parameter ) it will have access to,
assuming that the others had been determined to great accuracy by alternative
means. Here we perform a more careful analysis by explicitly using the
potential Planck CMB data as prior information for these other parameters. We
find that ET will be able to constrain and with accuracies and , respectively. These results are compared
with projected accuracies for the JDEM Baryon Acoustic Oscillations project and
the SNAP Type Ia supernovae observations.Comment: 28 pages, 5 figures, 5 tables; Published Versio
Activity and Process Stability of Purified Green Pepper (Capsicum annuum) Pectin Methylesterase
Pectin methylesterase (PME) from green bell peppers (Capsicum annuum) was extracted and purified by affinity chromatography on a CNBr-Sepharose-PMEI column. A single protein peak with pectin methylesterase activity was observed. For the pepper PME, a biochemical characterization in terms of molar mass (MM), isoelectric points (pI), and kinetic parameters for activity and thermostability was performed. The optimum pH for PME activity at 22 °C was 7.5, and its optimum temperature at neutral pH was between 52.5 and 55.0 °C. The purified pepper PME required the presence of 0.13 M NaCl for optimum activity. Isothermal inactivation of purified pepper PME in 20 mM Tris buffer (pH 7.5) could be described by a fractional conversion model for lower temperatures (55?57 °C) and a biphasic model for higher temperatures (58?70 °C). The enzyme showed a stable behavior toward high-pressure/temperature treatments. Keywords: Capsicum annuum; pepper; pectin methylesterase; purification; characterization; thermal and high-pressure stabilit
- …
