1,908 research outputs found
Role of interference in quantum state transfer through spin chains
We examine the role that interference plays in quantum state transfer through
several types of finite spin chains, including chains with isotropic Heisenberg
interaction between nearest neighbors, chains with reduced coupling constants
to the spins at the end of the chain, and chains with anisotropic coupling
constants. We evaluate quantitatively both the interference corresponding to
the propagation of the entire chain, and the interference in the effective
propagation of the first and last spins only, treating the rest of the chain as
black box. We show that perfect quantum state transfer is possible without
quantum interference, and provide evidence that the spin chains examined
realize interference-free quantum state transfer to a good approximation.Comment: 10 figure
Use of dynamical coupling for improved quantum state transfer
We propose a method to improve quantum state transfer in transmission lines.
The idea is to localize the information on the last qubit of a transmission
line, by dynamically varying the coupling constants between the first and the
last pair of qubits. The fidelity of state transfer is higher then in a chain
with fixed coupling constants. The effect is stable against small fluctuations
in the system parameters.Comment: 5 pages, 7 figure
The Effect of High Dose Total Body Irradiation on ACTH, Corticosterone, and Catecholamines in the Rat
Total body irradiation (TBI) or partial body irradiation is a distinct risk of accidental, wartime, or terrorist events. Total body irradiation is also used as conditioning therapy before hematopoietic stem cell transplantation. This therapy can result in injury to multiple tissues and might result in death as a result of multiorgan failure. The hypothalamic–pituitary–adrenal (HPA) axis could play a causative role in those injuries, in addition to being activated under conditions of stress. In a rat model of TBI, we have established that radiation nephropathy is a significant lethal complication, which is caused by hypertension and uremia. The current study assessed HPA axis function in rats undergoing TBI. Using a head-shielded model of TBI, we found an enhanced response to corticotropin-releasing hormone (CRH) in vitro in pituitaries from irradiated compared with nonirradiated rats at both 8 and 70 days after 10-Gy single fraction TBI. At 70, but not 8 days, plasma adrenocorticotrophic hormone (ACTH) and corticosterone levels were increased significantly in irradiated compared with nonirradiated rats. Plasma aldosterone was not affected by TBI at either time point, whereas plasma renin activity was decreased in irradiated rats at 8 days. Basal and stimulated adrenal steroid synthesis in vitro was not affected by TBI. In addition, plasma epinephrine was decreased at 70 days after TBI. The hypothalamic expression of CRH messenger RNA (mRNA) and hippocampal expression of glucocorticoid receptor mRNA were unchanged by irradiation. We conclude that the hypertension of radiation nephropathy is not aldosterone or catecholamine-dependent but that there is an abscopal activation of the HPA axis after 10 Gy TBI. This activation was attributable at least partially to enhanced pituitary ACTH production
Variable electrostatic transformer: controllable coupling of two charge qubits
We propose and investigate a novel method for the controlled coupling of two
Josephson charge qubits by means of a variable electrostatic transformer. The
value of the coupling capacitance is given by the discretized curvature of the
lowest energy band of a Josephson junction, which can be positive, negative, or
zero. We calculate the charging diagram of the two-qubit system that reflects
the transition from positive to negative through vanishing coupling. We also
discuss how to construct a phase gate making use of the controllable coupling.Comment: final version, to appear in Phys. Rev. Let
Electrical transport through a single-electron transistor strongly coupled to an oscillator
We investigate electrical transport through a single-electron transistor
coupled to a nanomechanical oscillator. Using a combination of a
master-equation approach and a numerical Monte Carlo method, we calculate the
average current and the current noise in the strong-coupling regime, studying
deviations from previously derived analytic results valid in the limit of
weak-coupling. After generalizing the weak-coupling theory to enable the
calculation of higher cumulants of the current, we use our numerical approach
to study how the third cumulant is affected in the strong-coupling regime. In
this case, we find an interesting crossover between a weak-coupling transport
regime where the third cumulant heavily depends on the frequency of the
oscillator to one where it becomes practically independent of this parameter.
Finally, we study the spectrum of the transport noise and show that the two
peaks found in the weak-coupling limit merge on increasing the coupling
strength. Our calculation of the frequency-dependence of the noise also allows
to describe how transport-induced damping of the mechanical oscillations is
affected in the strong-coupling regime.Comment: 11 pages, 9 figure
2015 Update on Acute Adverse Reactions to Gadolinium based Contrast Agents in Cardiovascular MR. Large Multi-National and Multi-Ethnical Population Experience With 37788 Patients From the EuroCMR Registry
Objectives: Specifically we aim to demonstrate that the results of our earlier safety data hold true in this much larger multi-national and multi-ethnical population. Background: We sought to re-evaluate the frequency, manifestations, and severity of acute adverse reactions associated with administration of several gadolinium- based contrast agents during routine CMR on a European level. Methods: Multi-centre, multi-national, and multi-ethnical registry with consecutive enrolment of patients in 57 European centres. Results: During the current observation 37788 doses of Gadolinium based contrast agent were administered to 37788 patients. The mean dose was 24.7 ml (range 5–80 ml), which is equivalent to 0.123 mmol/kg (range 0.01 - 0.3 mmol/kg). Forty-five acute adverse reactions due to contrast administration occurred (0.12 %). Most reactions were classified as mild (43 of 45) according to the American College of Radiology definition. The most frequent complaints following contrast administration were rashes and hives (15 of 45), followed by nausea (10 of 45) and flushes (10 of 45). The event rate ranged from 0.05 % (linear non-ionic agent gadodiamide) to 0.42 % (linear ionic agent gadobenate dimeglumine). Interestingly, we also found different event rates between the three main indications for CMR ranging from 0.05 % (risk stratification in suspected CAD) to 0.22 % (viability in known CAD). Conclusions: The current data indicate that the results of the earlier safety data hold true in this much larger multi-national and multi-ethnical population. Thus, the “off-label” use of Gadolinium based contrast in cardiovascular MR should be regarded as safe concerning the frequency, manifestation and severity of acute events
Quantum state transfer in arrays of flux qubits
In this work, we describe a possible experimental realization of Bose's idea
to use spin chains for short distance quantum communication [S. Bose, {\it
Phys. Rev. Lett.} {\bf 91} 207901]. Josephson arrays have been proposed and
analyzed as transmission channels for systems of superconducting charge qubits.
Here, we consider a chain of persistent current qubits, that is appropriate for
state transfer with high fidelity in systems containing flux qubits. We
calculate the fidelity of state transfer for this system. In general, the
Hamiltonian of this system is not of XXZ-type, and we analyze the magnitude and
the effect of the terms that don't conserve the z-component of the total spin.Comment: 10 pages, 8 figure
Quantum simulation of small-polaron formation with trapped ions
We propose a quantum simulation of small-polaron physics using a
one-dimensional system of trapped ions acted upon by off-resonant standing
waves. This system, envisioned as an array of microtraps, in the
single-excitation case allows the realization of the anti-adiabatic regime of
the Holstein model. We show that the strong excitation-phonon coupling regime,
characterized by the formation of small polarons, can be reached using
realistic values of the relevant system parameters. Finally, we propose
measurements of the quasiparticle residue and the average number of phonons in
the ground state, experimental probes validating the polaronic character of the
phonon-dressed excitation.Comment: accepted for publication in Phys. Rev. Let
Coherent oscillations in a Cooper-pair box
This paper is devoted to an analysis of the experiment by Nakamura {\it et
al.} (Nature {\bf 398}, 786 (1999)) on the quantum state control in Josephson
junctions devices. By considering the relevant processes involved in the
detection of the charge state of the box and a realistic description of the
gate pulse we are able to analyze some aspects of the experiment (like the
amplitude of the measurement current) in a quantitative way
Positive cross-correlations in a three-terminal quantum dot with ferromagnetic contacts
We study current fluctuations in an interacting three-terminal quantum dot
with ferromagnetic leads. For appropriately polarized contacts, the transport
through the dot is governed by a novel dynamical spin blockade, i.e., a
spin-dependent bunching of tunneling events not present in the paramagnetic
case. This leads for instance to positive zero-frequency cross-correlations of
the currents in the output leads even in the absence of spin accumulation on
the dot. We include the influence of spin-flip scattering and identify
favorable conditions for the experimental observation of this effect with
respect to polarization of the contacts and tunneling rates.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
- …
