441 research outputs found
A cortical potential reflecting cardiac function
Emotional trauma and psychological stress can precipitate cardiac arrhythmia and sudden death through arrhythmogenic effects of efferent sympathetic drive. Patients with preexisting heart disease are particularly at risk. Moreover, generation of proarrhythmic activity patterns within cerebral autonomic centers may be amplified by afferent feedback from a dysfunctional myocardium. An electrocortical potential reflecting afferent cardiac information has been described, reflecting individual differences in interoceptive sensitivity (awareness of one's own heartbeats). To inform our understanding of mechanisms underlying arrhythmogenesis, we extended this approach, identifying electrocortical potentials corresponding to the cortical expression of afferent information about the integrity of myocardial function during stress. We measured changes in cardiac response simultaneously with electroencephalography in patients with established ventricular dysfunction. Experimentally induced mental stress enhanced cardiovascular indices of sympathetic activity (systolic blood pressure, heart rate, ventricular ejection fraction, and skin conductance) across all patients. However, the functional response of the myocardium varied; some patients increased, whereas others decreased, cardiac output during stress. Across patients, heartbeat-evoked potential amplitude at left temporal and lateral frontal electrode locations correlated with stress-induced changes in cardiac output, consistent with an afferent cortical representation of myocardial function during stress. Moreover, the amplitude of the heartbeat-evoked potential in the left temporal region reflected the proarrhythmic status of the heart (inhomogeneity of left ventricular repolarization). These observations delineate a cortical representation of cardiac function predictive of proarrhythmic abnormalities in cardiac repolarization. Our findings highlight the dynamic interaction of heart and brain in stress-induced cardiovascular morbidity
Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer
Introduction
Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach.
Methods
Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39).
Results
Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1).
Conclusions
These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response
Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface
The nuclear polarization of molecules formed by recombination
of nuclear polarized H atoms on the surface of a storage cell initially coated
with a silicon-based polymer has been measured by using the longitudinal
double-spin asymmetry in deep-inelastic positron-proton scattering. The
molecules are found to have a substantial nuclear polarization, which is
evidence that initially polarized atoms retain their nuclear polarization when
absorbed on this type of surfac
Double hadron leptoproduction in the nuclear medium
First measurement of double-hadron production in deep-inelastic scattering
has been measured with the HERMES spectrometer at HERA using a 27.6 GeV
positron beam with deuterium, nitrogen, krypton and xenon targets. The
influence of the nuclear medium on the ratio of double-hadron to single-hadron
yields has been investigated. Nuclear effects are clearly observed but with
substantially smaller magnitude and reduced -dependence compared to
previously measured single-hadron multiplicity ratios. The data are in fair
agreement with models based on partonic or pre-hadronic energy loss, while they
seem to rule out a pure absorptive treatment of the final state interactions.
Thus, the double-hadron ratio provides an additional tool for studying
modifications of hadronization in nuclear matter
Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron
The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2]
for the proton and neutron have been determined from measurements of polarised
cross section asymmetries in deep inelastic scattering of 27.5 GeV
longitudinally polarised positrons from polarised 1H and 3He internal gas
targets. The data were collected in the region above the nucleon resonances in
the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the
proton the contribution to the generalised Gerasimov-Drell-Hearn integral was
found to be substantial and must be included for an accurate determination of
the full integral. Furthermore the data are consistent with a QCD
next-to-leading order fit based on previous deep inelastic scattering data.
Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
Quark helicity distributions in the nucleon for up, down, and strange quarks from semi--inclusive deep--inelastic scattering
Polarized deep--inelastic scattering data on longitudinally polarized
hydrogen and deuterium targets have been used to determine double spin
asymmetries of cross sections. Inclusive and semi--inclusive asymmetries for
the production of positive and negative pions from hydrogen were obtained in a
re--analysis of previously published data. Inclusive and semi--inclusive
asymmetries for the production of negative and positive pions and kaons were
measured on a polarized deuterium target. The separate helicity densities for
the up and down quarks and the anti--up, anti--down, and strange sea quarks
were computed from these asymmetries in a ``leading order'' QCD analysis. The
polarization of the up--quark is positive and that of the down--quark is
negative. All extracted sea quark polarizations are consistent with zero, and
the light quark sea helicity densities are flavor symmetric within the
experimental uncertainties. First and second moments of the extracted quark
helicity densities in the measured range are consistent with fits of inclusive
data
Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction
Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H,
3He, and 14N targets has been studied by the HERMES experiment at squared
four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20
GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the
nuclear transparency, was found to decrease with increasing coherence length of
quark-antiquark fluctuations of the virtual photon. The data provide clear
evidence of the interaction of the quark- antiquark fluctuations with the
nuclear medium.Comment: RevTeX, 5 pages, 3 figure
Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons
Production and decay angular distributions were extracted from measurements
of exclusive electroproduction of the rho^0(770) meson over a range in the
virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the
photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was
performed with the HERMES spectrometer, using a longitudinally polarized
positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring.
The event sample combines rho^0 mesons produced incoherently off individual
nucleons and coherently off the nucleus as a whole. The distributions in one
production angle and two angles describing the rho^0 -> pi+ pi- decay yielded
measurements of eight elements of the spin-density matrix, including one that
had not been measured before. The results are consistent with the dominance of
helicity-conserving amplitudes and natural parity exchange. The improved
precision achieved at 47 GeV,
reveals evidence for an energy dependence in the ratio R of the longitudinal to
transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class
Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor
changes to tex
Recommended from our members
In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention
Cortical acetylcholine is involved in key cognitive processes such as visuospatial attention. Dysfunction in the cholinergic system has been described in a number of neuropsychiatric disorders. Levels of brain acetylcholine can be pharmacologically manipulated, but it is not possible to directly measure it in vivo in humans. However, key parts of its biochemical cascade in neural tissue, such as choline, can be measured using magnetic resonance spectroscopy (MRS). There is evidence that levels of choline may be an indirect but proportional measure of acetylcholine availability in brain tissue. In this study, we measured relative choline levels in the parietal cortex using functional (event-related) MRS (fMRS) during performance of a visuospatial attention task, with a modelling approach verified using simulated data. We describe a task-driven interaction effect on choline concentration, specifically driven by contralateral attention shifts. Our results suggest that choline MRS has the potential to serve as a proxy of brain acetylcholine function in humans
- …
