3,686 research outputs found
The structure of borders in a small world
Geographic borders are not only essential for the effective functioning of
government, the distribution of administrative responsibilities and the
allocation of public resources, they also influence the interregional flow of
information, cross-border trade operations, the diffusion of innovation and
technology, and the spatial spread of infectious diseases. However, as growing
interactions and mobility across long distances, cultural, and political
borders continue to amplify the small world effect and effectively decrease the
relative importance of local interactions, it is difficult to assess the
location and structure of effective borders that may play the most significant
role in mobility-driven processes. The paradigm of spatially coherent
communities may no longer be a plausible one, and it is unclear what structures
emerge from the interplay of interactions and activities across spatial scales.
Here we analyse a multi-scale proxy network for human mobility that
incorporates travel across a few to a few thousand kilometres. We determine an
effective system of geographically continuous borders implicitly encoded in
multi-scale mobility patterns. We find that effective large scale boundaries
define spatially coherent subdivisions and only partially coincide with
administrative borders. We find that spatial coherence is partially lost if
only long range traffic is taken into account and show that prevalent models
for multi-scale mobility networks cannot account for the observed patterns.
These results will allow for new types of quantitative, comparative analyses of
multi-scale interaction networks in general and may provide insight into a
multitude of spatiotemporal phenomena generated by human activity.Comment: 9 page
Modeling one-dimensional island growth with mass-dependent detachment rates
We study one-dimensional models of particle diffusion and
attachment/detachment from islands where the detachment rates gamma(m) of
particles at the cluster edges increase with cluster mass m. They are expected
to mimic the effects of lattice mismatch with the substrate and/or long-range
repulsive interactions that work against the formation of long islands.
Short-range attraction is represented by an overall factor epsilon<<1 in the
detachment rates relatively to isolated particle hopping rates [epsilon ~
exp(-E/T), with binding energy E and temperature T]. We consider various
gamma(m), from rapidly increasing forms such as gamma(m) ~ m to slowly
increasing ones, such as gamma(m) ~ [m/(m+1)]^b. A mapping onto a column
problem shows that these systems are zero-range processes, whose steady states
properties are exactly calculated under the assumption of independent column
heights in the Master equation. Simulation provides island size distributions
which confirm analytic reductions and are useful whenever the analytical tools
cannot provide results in closed form. The shape of island size distributions
can be changed from monomodal to monotonically decreasing by tuning the
temperature or changing the particle density rho. Small values of the scaling
variable X=epsilon^{-1}rho/(1-rho) favour the monotonically decreasing ones.
However, for large X, rapidly increasing gamma(m) lead to distributions with
peaks very close to and rapidly decreasing tails, while slowly increasing
gamma(m) provide peaks close to /2$ and fat right tails.Comment: 16 pages, 6 figure
Parameter evaluation in Michaelis-menten kinetics.
Parameter estimation reliability in enzyme kinetics depends upon the substrate range concentrations under assay. An inappropriate concentration set may lead to spurious values of km and Vmax in the Michaelis-Menten approach. In this paper, the theoretical arguments for a practical criterium concerning the best work range of substrate concentration are discussed on a velocity ratio basis (V1/Vn) as response to the pertinent substrate concentration ratio (S1/Sn)
Upgrade of a low-temperature scanning tunneling microscope for electron-spin resonance
Electron spin resonance with a scanning tunneling microscope (ESR-STM)
combines the high energy resolution of spin resonance spectroscopy with the
atomic scale control and spatial resolution of STM. Here we describe the
upgrade of a helium-3 STM with a 2D vector-field magnet ( = 8.0 T, =
0.8 T) to an ESR-STM. The system is capable of delivering RF power to the
tunnel junction at frequencies up to 30 GHz. We demonstrate magnetic field
sweep ESR for the model system TiH/MgO/Ag(100) and find a magnetic moment of
. Our upgrade enables to toggle between a DC mode,
where the STM is operated with the regular control electronics, and an
ultrafast-pulsed mode that uses an arbitrary waveform generator for pump-probe
spectroscopy or reading of spin-states. Both modes allow for simultaneous
radiofrequency excitation, which we add via a resistive pick-off tee to the
bias voltage path. The RF cabling from room temperature to the 350 mK stage has
an average attenuation of 18 dB between 5 and 25 GHz. The cable segment between
the 350 mK stage and the STM tip presently attenuates an additional
dB from 10 to 26 GHz and dB between 20 and 30
GHz. We discuss our transmission losses and indicate ways to reduce this
attenuation. We finally demonstrate how to synchronize the arrival times of RF
and DC pulses coming from different paths to the STM junction, a prerequisite
for future pulsed ESR experiments.Comment: 7 figure
Complexity of energy release during the Imperial Valley, California, earthquake of 1940
The pattern of energy release during the Imperial Valley, California, earthquake of 1940 is studied by analyzing the El Centro strong motion seismograph record and records from the Tinemaha seismograph station, 546 km from the epicenter. The earthquake was a multiple event sequence with at least 4 events recorded at El Centro in the first 25 seconds, followed by 9 events recorded in the next 5 minutes. Clear P, S, and surface waves were observed on the strong motion record. Although the main part of the earthquake energy was released during the first 15 seconds, some of the later events were as large as M = 5.8 and thus are important for earthquake engineering studies. The moment calculated using Fourier analysis of surface waves agrees with the moment estimated from field measurements of fault offset after the earthquake. The earthquake engineering significance of the complex pattern of energy release is discussed. It is concluded that a cumulative increase in amplitudes of building vibration resulting from the present sequence of shocks would be significant only for structures with relatively long natural period of vibration. However, progressive weakening effects may also lead to greater damage for multiple event earthquakes
Sulfur cycling and metabolism of phototrophic and filamentous sulfur bacteria
Phototrophic sulfur bacteria taken from different habitate (Alum Rock State Park, Palo Alto salt marsh, and Big Soda Lake) were grown on selective media, characterized by morphological and pigment analysis, and compared with bacteria maintained in pure culture. A study was made of the anaerobic reduction of intracellular sulfur globules by a phototrophic sulfur bacterium (Chromatium vinosum) and a filamentous aerobic sulfur bacterium (Beggiatoa alba). Buoyant densities of different bacteria were measured in Percoll gradients. This method was also used to separate different chlorobia in mixed cultures and to assess the relative homogeneity of cultures taken directly or enriched from natural samples (including the purple bacterial layer found at a depth of 20 meters at Big Soda Lake.) Interactions between sulfide oxidizing bacteria were studied
The geomorphological setting of some of Scotland's east coast freshwater mills: a comment on Downward and Skinner (2005) ‘Working rivers: the geomorphological legacy...’
Many of the water mills on Scotland's east coast streams, unlike those discussed recently by Downward and Skinner (2005 Area 37 138–47), are found in predominantly bedrock reaches immediately downstream of knickpoints (i.e. bedrock steps). Bedrock knickpoints in the lower reaches of Scottish rivers are a widespread fluvial response to the glacio-isostatic rebound of northern Britain. These steps in the river profile propagate headward over time, but for intervals of a few centuries or so they are sufficiently stable to be exploited for the elevational fall necessary to power the mill wheel. Many of these mills were apparently powered by ‘run-of-the-river’, as are some today that formerly had mill dams. The typical lack of sediment storage along the erosional lower reaches of many Scottish rivers means that failure of mill structures in Scotland will probably have less dramatic geomorphological and management implications than those suggested by Downward and Skinner for southern English rivers
Exploring Oxidation in the Remote Free Troposphere: Insights from Atmospheric Tomography (ATom)
Earth's atmosphere oxidizes the greenhouse gas methane and other gases, thus determining their lifetimes and oxidation products. Much of this oxidation occurs in the remote, relatively clean free troposphere above the planetary boundary layer, where the oxidation chemistry is thought to be much simpler and better understood than it is in urban regions or forests. The NASA airborne Atmospheric Tomography study (ATom) was designed to produce cross sections of the detailed atmospheric composition in the remote atmosphere over the Pacific and Atlantic Oceans during four seasons. As part of the extensive ATom data set, measurements of the atmosphere's primary oxidant, hydroxyl (OH), and hydroperoxyl (HO₂) are compared to a photochemical box model to test the oxidation chemistry. Generally, observed and modeled median OH and HO₂ agree to with combined uncertainties at the 2σ confidence level, which is ~±40%. For some seasons, this agreement is within ~±20% below 6 km altitude. While this test finds no significant differences, OH observations increasingly exceeded modeled values at altitudes above 8 km, becoming ~35% greater, which is near the combined uncertainties. Measurement uncertainty and possible unknown measurement errors complicate tests for unknown chemistry or incorrect reaction rate coefficients that would substantially affect the OH and HO₂ abundances. Future analysis of detailed comparisons may yield additional discrepancies that are masked in the median values
Antiferromagnetic MnNi tips for spin-polarized scanning probe microscopy
Spin-polarized scanning tunneling microscopy (SP-STM) measures tunnel
magnetoresistance (TMR) with atomic resolution. While various methods for
achieving SP probes have been developed, each is limited with respect to
fabrication, performance, and allowed operating conditions. In this study, we
present the fabrication and use of SP-STM tips made from commercially available
antiferromagnetic foil. The tips are intrinsically SP,
which is attractive for exploring magnetic phenomena in the zero field limit.
The tip material is relatively ductile and straightforward to etch. We
benchmark the conventional STM and spectroscopic performance of our tips and
demonstrate their spin sensitivity by measuring the two-state switching of
holmium single atom magnets on MgO/Ag(100)
- …
