1,397 research outputs found
Two-Face(s): ionized and neutral gas winds in the local Universe
We present a comprehensive study of the Na I 5890, 5895 (Na I D)
resonant lines in the Sloan Digital Sky Survey (SDSS, DR7) spectroscopic sample
to look for neutral gas outflows in the local galaxies. Individual galaxy
spectra are stacked in bins of M and SFR to investigate the dependence
of galactic wind occurrence and velocity as a function of the galaxy position
in the SFR- plane. In massive galaxies at the high SFR tail we find
evidence of a significant blue-shifted Na I D absorption, which we interpret as
evidence of neutral outflowing gas. The occurrence of the blue-shifted
absorption is observed at the same significance for purely SF galaxies, AGN and
composite systems at fixed SFR. In all classes of objects the blue-shift is the
largest and the Na I D equivalent width the smallest for face-on galaxies while
the absorption feature is at the systemic velocity for edge-on systems. This
indicates that the neutral outflow is mostly perpendicular or biconical with
respect to the galactic disk. We also compare the kinematics of the neutral gas
with the ionized gas phase as traced by the [OIII]5007, H,
[NII] and [NII] emission lines. Differently for the
neutral gas phase, all the emission lines show evidence of perturbed kinematics
only in galaxies with a significant level of nuclear activity and, they are
independent from the disk inclination. In conclusion, we find that, in the
local Universe, galactic winds show two faces which are related to two
different ejection mechanisms, namely the neutral outflowing gas phase related
to the SF activity along the galaxy disk and the ionized phase related to the
AGN feedback. In both the neutral and ionized gas phases, the observed wind
velocities suggest that the outflowing gas remains bound to the galaxy with no
definitive effect on the gas reservoir.Comment: Accepted to A&A, 13 pages, 9 figure
Magellan Spectroscopy of AGN Candidates in the COSMOS Field
We present spectroscopic redshifts for the first 466 X-ray and radio-selected
AGN targets in the 2 deg^2 COSMOS field. Spectra were obtained with the IMACS
instrument on the Magellan (Baade) telescope, using the nod-and-shuffle
technique. We identify a variety of Type 1 and Type 2 AGN, as well as red
galaxies with no emission lines. Our redshift yield is 72% down to i_AB=24,
although the yield is >90% for i_AB<22. We expect the completeness to increase
as the survey continues. When our survey is complete and additional redshifts
from the zCOSMOS project are included, we anticipate ~1100 AGN with redshifts
over the entire COSMOS field. Our redshift survey is consistent with an
obscured AGN population that peaks at z~0.7, although further work is necessary
to disentangle the selection effects.Comment: 19 pages, 14 figures. Accepted to ApJS special COSMOS issue. The full
electronic version of Table 2 can be found at
http://shaihulud.as.arizona.edu/~jtrump/tab2.tx
Recommended from our members
Facebook Use Among African American and Hispanic Students: An Exploratory Investigation of Perceived Academic Impact
Facebook is one of the world’s leading social networking sites. It is pervasive in students’ lives and can impact their academic careers in a variety of ways. However, little research exists evaluating the use of Facebook in minority academic settings. An early step in this direction is to gain an understanding of how different student demographic groups use Facebook. An interest in further assessment of Facebook’s role in diverse segments of academia motivates the collection and analysis of Facebook-related data from minority serving institutions such as Historically Black Colleges or Universities (HBCUs) and Hispanic Serving Institutions (HSIs). This study presents the results of a comparative examination of African American students at an HBCU and Hispanic students at an HSI regarding their perceptions of Facebook use for academics. The findings reveal significant differences between the two groups. When compared to African American students, the Hispanic students use Facebook more for academics even though they perceive it to have a negative impact on academics. This perceived negative impact of Facebook is not directly translated into actual differences in self-reported GPA
Blowin' in the wind: both `negative' and `positive' feedback in an obscured high-z Quasar
Quasar feedback in the form of powerful outflows is invoked as a key
mechanism to quench star formation in galaxies, preventing massive galaxies to
over-grow and producing the red colors of ellipticals. On the other hand, some
models are also requiring `positive' AGN feedback, inducing star formation in
the host galaxy through enhanced gas pressure in the interstellar medium.
However, finding observational evidence of the effects of both types of
feedback is still one of the main challenges of extragalactic astronomy, as few
observations of energetic and extended radiatively-driven winds are available.
Here we present SINFONI near infrared integral field spectroscopy of XID2028,
an obscured, radio-quiet z=1.59 QSO detected in the XMM-COSMOS survey, in which
we clearly resolve a fast (1500 km/s) and extended (up to 13 kpc from the black
hole) outflow in the [OIII] lines emitting gas, whose large velocity and
outflow rate are not sustainable by star formation only. The narrow component
of Ha emission and the rest frame U band flux from HST-ACS imaging enable to
map the current star formation in the host galaxy: both tracers independently
show that the outflow position lies in the center of an empty cavity surrounded
by star forming regions on its edge. The outflow is therefore removing the gas
from the host galaxy (`negative feedback'), but also triggering star formation
by outflow induced pressure at the edges (`positive feedback'). XID2028
represents the first example of a host galaxy showing both types of feedback
simultaneously at work.Comment: 9 pages, 5 figures, accepted for publication in Ap
Role of the electro-thermo-mechanical multiple coupling on the operation of RF microswitch
A phenomenological approach is proposed to identify some effects occurring within the structure of the microswitch conceived for radio frequency application. This microsystem is operated via a nonlinear electromechanical action imposed by the applied voltage. Unfortunately, it can be affected by residual stress, due to the microfabrication process, therefore axial and flexural behaviors are strongly coupled. This coupling increases the actuation voltage required to achieve the so-called ‘‘pull-in'' condition. Moreover, temperature may strongly affect strain and stress distributions, respectively. Environmental temperature, internal dissipation of material, thermo-elastic and Joule effects play different roles on the microswitch flexural isplacement. Sometimes buckling phenomenon evenly occurs. Literature show that all those issues make difficult an effective computation of ‘‘pull-in'' and ‘‘pull-out'' voltages for evenly distinguishing the origin of some failures detected in operation. Analysis, numerical methods and experiments are applied to an industrial test case to investigate step by step the RF-microswitch operation. Multiple electro-hermomechanical coupling is first modeled to have a preliminary and comprehensive description of the microswitch behavior and of its reliability. ‘‘Pull-in'' and ‘‘pull-out'' tests are then performed to validate the proposed models and to find suitable criteria to design the RF-MEM
A New Family of Multistep Methods with Improved Phase Lag Characteristics for the Integration of Orbital Problems
In this work we introduce a new family of ten-step linear multistep methods
for the integration of orbital problems. The new methods are constructed by
adopting a new methodology which improves the phase lag characteristics by
vanishing both the phase lag function and its first derivatives at a specific
frequency. The efficiency of the new family of methods is proved via error
analysis and numerical applications.Comment: 21 pages, 3 figures, 1 tabl
AGN X-ray variability in the XMM-COSMOS survey
We took advantage of the observations carried out by XMM in the COSMOS field
during 3.5 years, to study the long term variability of a large sample of AGN
(638 sources), in a wide range of redshift (0.1<z<3.5) and X-ray luminosity
(L(2-10)). Both a simple statistical method to asses the
significance of variability, and the Normalized Excess Variance
() parameter, where used to obtain a quantitative measurement
of the variability. Variability is found to be prevalent in most AGN, whenever
we have good statistic to measure it, and no significant differences between
type-1 and type-2 AGN were found. A flat (slope -0.23+/-0.03) anti-correlation
between and X-ray luminosity is found, when significantly
variable sources are considered all together. When divided in three redshift
bins, the anti-correlation becomes stronger and evolving with z, with higher
redshift AGN being more variable. We prove however that this effect is due to
the pre-selection of variable sources: considering all the sources with
available measurement, the evolution in redshift disappears.
For the first time we were also able to study the long term X-ray variability
as a function of and Eddington ratio, for a large sample of AGN
spanning a wide range of redshift. An anti-correlation between
and is found, with the same slope of the
anti-correlation between and X-ray luminosity, suggesting
that the latter can be a byproduct of the former one. No clear correlation is
found between and the Eddington ratio in our sample.
Finally, no correlation is found between the X-ray and the
optical variability.Comment: 14 Pages, 13 figures. Accepted to the Astrophysical Journal on
December 6, 201
SPIDERS: Selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys
SPIDERS (SPectroscopic IDentification of eROSITA Sources) is an SDSS-IV
survey running in parallel to the eBOSS cosmology project. SPIDERS will obtain
optical spectroscopy for large numbers of X-ray-selected AGN and galaxy cluster
members detected in wide area eROSITA, XMM-Newton and ROSAT surveys. We
describe the methods used to choose spectroscopic targets for two
sub-programmes of SPIDERS: X-ray selected AGN candidates detected in the ROSAT
All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian
cross-matching algorithm, guided by priors based on mid-IR colour-magnitude
information from the WISE survey, to select the most probable optical
counterpart to each X-ray detection. We empirically demonstrate the high
fidelity of our counterpart selection method using a reference sample of bright
well-localised X-ray sources collated from XMM-Newton, Chandra and Swift-XRT
serendipitous catalogues, and also by examining blank-sky locations. We
describe the down-selection steps which resulted in the final set of
SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS
survey, and present catalogues of these targets. We also present catalogues of
~12000 ROSAT and ~1500 XMM-Newton Slew survey sources which have existing
optical spectroscopy from SDSS-DR12, including the results of our visual
inspections. On completion of the SPIDERS program, we expect to have collected
homogeneous spectroscopic redshift information over a footprint of ~7500
deg for >85 percent of the ROSAT and XMM-Newton Slew survey sources having
optical counterparts in the magnitude range 17<r<22.5, producing a large and
highly complete sample of bright X-ray-selected AGN suitable for statistical
studies of AGN evolution and clustering.Comment: MNRAS, accepte
- …
