2,208 research outputs found

    Validity of the Gor'kov expansion near the upper critical field in type II superconductors

    Full text link
    We have examined the validity of the Gor'kov expansion in the strength of the order parameter of type II superconductors near the upper critical field. Although the degeneracy of the electron levels in a magnetic field gives non- perturbative terms in the solution to the Bogoliubov-de Gennes equations we find, contrary to recent claims, that these non-perturbative terms cancel in the expression for the thermodynamic potential, and that the traditional Gor'kov theory is correct sufficiently close to Hc2 at finite temperature. We have derived conditions for the validity of the Gor'kov theory which essentially state, that the change in the quasiparticle energies as compared to the normal state energies cannot be too large compared to the temperature.Comment: 5 pages, 3 figures. One reference adde

    Polarons and Molecules in a Two-Dimensional Fermi Gas

    Full text link
    We study an impurity atom in a two-dimensional Fermi gas using variational wave functions for (i) an impurity dressed by particle-hole excitations (polaron) and (ii) a dimer consisting of the impurity and a majority atom. In contrast to three dimensions, where similar calculations predict a sharp transition to a dimer state with increasing interspecies attraction, we show that the polaron ansatz always gives a lower energy. However, the exact solution for a heavy impurity reveals that both a two-body bound state and distortions of the Fermi sea are crucial. This reflects the importance of particle-hole pairs in lower dimensions and makes simple variational calculations unreliable. We show that the energy of an impurity gives important information about its dressing cloud, for which both ans\"atze give inaccurate results.Comment: 5 pages, 2 figures, minor change

    Feshbach Resonances and Medium Effects in ultracold atomic Gases

    Full text link
    We develop an effective low energy theory for multi-channel scattering of cold atomic alkali atoms with particular focus on Feshbach resonances. The scattering matrix is expressed in terms of observables only and the theory allows for the inclusion of many-body effects both in the open and in the closed channels. We then consider the frequency and damping of collective modes for Fermi gases and demonstrate how medium effects significantly increase the scattering rate determining the nature of the modes. Our results obtained with no fitting parameters are shown to compare well with experimental data.Comment: Presented at the 5th workshop on Critical Stability, Erice, Italy 13-17 October 2008. 8 pages, 3 figures. Figure caption correcte

    Decay of polarons and molecules in a strongly polarized Fermi gas

    Full text link
    The ground state of an impurity immersed in a Fermi sea changes from a polaron to a molecule as the interaction strength is increased. We show here that the coupling between these two states is strongly suppressed due to a combination of phase space effects and Fermi statistics, and that it vanishes much faster than the energy difference between the two states, thereby confirming the first order nature of the polaron-molecule transition. In the regime where each state is metastable, we find quasiparticle lifetimes which are much longer than what is expected for a usual Fermi liquid. Our analysis indicates that the decay rates are sufficiently slow to be experimentally observable.Comment: Version accepted in PRL. Added discussion of three-body losses to deeply bound molecular state

    Transition from Collisionless to Hydrodynamic Behaviour in an Ultracold Atomic Gas

    Full text link
    Relative motion in a two-component, trapped atomic gas provides a sensitive probe of interactions. By studying the lowest frequency excitations of a two spin-state gas confined in a magnetic trap, we have explored the transition from the collisionless to the hydrodynamic regime. As a function of collision rate, we observe frequency shifts as large as 6% as well as a dramatic, non-monotonic dependence of the damping rate. The measurements agree qualitatively with expectations for behavior in the collisionless and hydrodynamic limits and are quantitatively compared to a classical kinetic model.Comment: 5 pages, 4 figure

    Viscosity and Thermal Relaxation for a resonantly interacting Fermi gas

    Full text link
    The viscous and thermal relaxation rates of an interacting fermion gas are calculated as functions of temperature and scattering length, using a many-body scattering matrix which incorporates medium effects due to Fermi blocking of intermediate states. These effects are demonstrated to be large close to the transition temperature TcT_c to the superfluid state. For a homogeneous gas in the unitarity limit, the relaxation rates are increased by nearly an order of magnitude compared to their value obtained in the absence of medium effects due to the Cooper instability at TcT_c. For trapped gases the corresponding ratio is found to be about three due to the averaging over the inhomogeneous density distribution. The effect of superfluidity below TcT_c is considered to leading order in the ratio between the energy gap and the transition temperature.Comment: 7 pages, 3 figure

    Spin diffusion in trapped clouds of strongly interacting cold atoms

    Full text link
    We show that puzzling recent experimental results on spin diffusion in a strongly interacting atomic gas may be understood in terms of the predicted spin diffusion coefficient for a generic strongly interacting system. Three important features play a central role: a) Fick's law for diffusion must be modified to allow for the trapping potential, b) the diffusion coefficient is inhomogeneous, due to the density variations in the cloud and c) the diffusion approximation fails in the outer parts of the cloud, where the mean free path is long.Comment: 4 pages, 6 figures, minor modifications to the text and figures in 2. versio

    Multi-channel scattering and Feshbach resonances: Effective theory, phenomenology, and many-body effects

    Full text link
    A low energy effective theory based on a microscopic multi-channel description of the atom-atom interaction is derived for the scattering of alkali atoms in different hyperfine states. This theory describes all scattering properties, including medium effects, in terms of the singlet and triplet scattering lengths and the range of the atom-atom potential and provides a link between a microscopic description of Feshbach scattering and more phenomenological approaches. It permits the calculation of medium effects on the resonance coming from the occupation of closed channel states. The examination of such effects are demonstrated to be of particular relevance to an experimentally important Feshbach resonance for 40^{40}K atoms. We analyze a recent rethermalization rate experiment on 40^{40}K and demonstrate that a measurement of the temperature dependence of this rate can determine the magnetic moment of the Feshbach molecule. Finally, the energy dependence of the Feshbach interaction is shown to introduce a negative effective range inversely proportional to the width of the resonance. Since our theory is based on a microscopic multi-channel picture, it allows the explicit calculation of corrections to commonly used approximations such as the neglect of the effective range and the treatment of the Feshbach molecule as a point boson.Comment: 10 pages, 5 figures. Typos corrected. Accepted for PR

    Spin Excitations in a Fermi Gas of Atoms

    Full text link
    We have experimentally investigated a spin excitation in a quantum degenerate Fermi gas of atoms. In the hydrodynamic regime the damping time of the collective excitation is used to probe the quantum behavior of the gas. At temperatures below the Fermi temperature we measure up to a factor of 2 reduction in the excitation damping time. In addition we observe a strong excitation energy dependence for this quantum statistical effect.Comment: 4 pages, 3 figure

    Nonequilibrium relaxation in neutral BCS superconductors: Ginzburg-Landau approach with Landau damping in real time

    Full text link
    We present a field-theoretical method to obtain consistently the equations of motion for small amplitude fluctuations of the order parameter directly in real time for a homogeneous, neutral BCS superconductor. This method allows to study the nonequilibrium relaxation of the order parameter as an initial value problem. We obtain the Ward identities and the effective actions for small phase the amplitude fluctuations to one-loop order. Focusing on the long-wavelength, low-frequency limit near the critical point, we obtain the time-dependent Ginzburg-Landau effective action to one-loop order, which is nonlocal as a consequence of Landau damping. The nonequilibrium relaxation of the phase and amplitude fluctuations is studied directly in real time. The long-wavelength phase fluctuation (Bogoliubov-Anderson-Goldstone mode) is overdamped by Landau damping and the relaxation time scale diverges at the critical point, revealing critical slowing down.Comment: 31 pages 14 figs, revised version, to appear in Phys. Rev.
    corecore