6,387 research outputs found
The physical nature of interplanetary dust as inferred by particles collected at 35 km
Particles were collected at an altitude of 35 km by two flights of a volume sampling micrometeorite collector. The collection scheme is very sensitive and is capable of collecting a significant number of particles. Many of the particles collected have chemical compositions similar to solar or to iron meteorites. Morphology of collected particles indicates that both true micrometeorites and ablation products were collected
An Observational Test of Two-field Inflation
We study adiabatic and isocurvature perturbation spectra produced by a period
of cosmological inflation driven by two scalar fields. We show that there
exists a model-independent consistency condition for all two-field models of
slow-roll inflation, despite allowing for model-dependent linear processing of
curvature and isocurvature perturbations during and after inflation on
super-horizon scales. The scale-dependence of all spectra are determined solely
in terms of slow-roll parameters during inflation and the dimensionless
cross-correlation between curvature and isocurvature perturbations. We present
additional model-dependent consistency relations that may be derived in
specific two-field models, such as the curvaton scenario.Comment: 6 pages, latex with revtex, no figures; v2, minor changes, to appear
in Physical Review
Neural cell adhesion molecules in rat endocrine tissues and tumor cells: distribution and molecular analysis
The adhesive properties of neural cell adhesion molecules (NCAMs) can be modified by alternative splicing of the primary transcript or posttranslational modifications. In the present study, we describe distinct forms of alternative splicing and posttranslational modification of the extracellular domain of NCAM of various endocrine tissues and derived tumor cells of the rat. Using an antiserum detecting the immunoglobulin-like domains of NCAM as well as a monoclonal antibody recognizing the NCAM-specific polysialic acid (PSA), we observed a similar staining pattern in adrenals, pituitary, and neoplastic endocrine cells. In endocrine tumor cells [pheochromocytoma (PC12), insulinoma (RINA2), and pituitary tumor cells (GH3)], NCAM immunoreactivity was most intense at contact sites between the cells. The immunocytochemical data were substantiated by results of in situ hybridization histochemistry. Specifically, higher levels of NCAM mRNA were detected in the adrenal cortex than in the medulla. In the pituitary, NCAM mRNA was more abundant in the anterior and intermediate lobes than in the neural lobe. The sequence of NCAM mRNAs in endocrine cells was analyzed by polymerase chain reaction and S1 nuclease protection assays. We found that major exons 4-13 of the NCAM mRNA in endocrine tissues and related tumor cell lines were homologous to those in the brain. However, PC12, RINA2, and GH3 tumor cells; normal rat pituitaries; and adrenals contained different amounts of NCAM mRNA with an alternative extra exon, termed VASE (also called pi in mouse) between constitutive exons 7 and 8. In addition, in pituitaries, we detected an alternative exon in splice site a between the constitutive exons 12 and 13, termed a15, with or without an AAG triplett. These sites are thought to be important for the adhesive properties of NCAM. Therefore, these results suggest that modifications of NCAM may be important for adhesive interactions in normal and neoplastic endocrine cells
Low temperature specific heat of the heavy fermion superconductor PrOsSb
We report the magnetic field dependence of the low temperature specific heat
of single crystals of the first Pr-based heavy fermion superconductor
PrOsSb. The low temperature specific heat and the magnetic phase
diagram inferred from specific heat, resistivity and magnetisation provide
compelling evidence of a doublet ground state and hence superconductivity
mediated by quadrupolar fluctuations. This establishes PrOsSb as a
very strong contender of superconductive pairing that is neither
electron-phonon nor magnetically mediated.Comment: 4 pages, 4 figure
Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration
To clarify a key role of orbitals in the emergence of
antiferro-quadrupole structure in PrPb, we investigate the ground-state
property of an orbital-degenerate Kondo lattice model by numerical
diagonalization techniques. In PrPb, Pr has a
configuration and the crystalline-electric-field ground state is a non-Kramers
doublet . In a - coupling scheme, the state is
described by two local singlets, each of which consists of two electrons
with one in and another in orbitals. Since in a cubic
structure, has localized nature, while orbitals are
rather itinerant, we propose the orbital-degenerate Kondo lattice model for an
effective Hamiltonian of PrPb. We show that an antiferro-orbital state is
favored by the so-called double-exchange mechanism which is characteristic of
multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30,
2007, Kobe
SO(10) Cosmic Strings and SU(3) Color Cheshire Charge
Certain cosmic strings that occur in GUT models such as can carry a
magnetic flux which acts nontrivially on objects carrying
quantum numbers. We show that such strings are non-Abelian Alice strings
carrying nonlocalizable colored ``Cheshire" charge. We examine claims made in
the literature that strings can have a long-range, topological
Aharonov-Bohm interaction that turns quarks into leptons, and observe that such
a process is impossible. We also discuss flux-flux scattering using a
multi-sheeted formalism.Comment: 37 Pages, 8 Figures (available upon request) phyzzx, iassns-hep-93-6,
itp-sb-93-6
- …
