408 research outputs found

    Nonstoichiometry and Weyl fermionic behavior in TaAs

    Get PDF
    The band structure of TaAs provides the necessary conditions for the emergence of Weyl fermions. Measurements verifying this fact are remarkably robust, given the reported levels of nonstoichiometry in typical single crystals. Here we demonstrate the surprising fact that a small degree of nonstoichiometry is essential for such observations in a wide range of temperatures. From first principles, we compute how crystal defects influence the position of the Fermi level relative to the so-called Weyl points, a key factor in allowing the detection of these particles. We show that observations of Weyl fermions depend crucially on nonstoichiometry and only occur within narrow ranges of elemental composition and temperature, indicating a considerable degree of fortuity in their discovery. Our approach suggests that in some cases the drive to produce ultra-pure crystals for measurements of exotic emergent phenomena may be misplaced

    N incorporation and associated localized vibrational modes in GaSb

    Get PDF
    We present results of electronic structure calculations on the N-related localized vibrational modes in the dilute nitride alloy GaSb1−xNx. By calculating the formation energies of various possible N incorporation modes in the alloy, we determine the most favorable N configurations, and we calculate their vibrational mode frequencies using density functional theory under the generalized gradient approximation to electron exchange and correlation, including the effects of the relativistic spin-orbit interactions. For a single N impurity, we find substitution on an Sb site, NSb, to be most favorable, and for a two-N-atom complex, we find the N-N split interstitial on an Sb site to be most favorable. For these defects, as well as, for comparison, defects comprising two N atoms on neighboring Sb sites and a N-Sb split interstitial on an Sb site, we find well-localized vibration modes (LVMs), which should be experimentally observable. The frequency of the triply degenerate LVM associated with NSb is determined to be 427.6 cm−1. Our results serve as a guide to future experimental studies to elucidate the incorporation of small concentrations of N in GaSb, which is known to lead to a reduction of the band gap and opens the possibility of using the material for long-wavelength applications

    Band energy control of molybdenum oxide by surface hydration

    Get PDF
    EPSRC (Grants EP/M009580/1, EP/J017361/1, EP/I01330X/1, and EP/I028641/1), the Royal Society, and the European Research Council. The work benefited from the University of Bath's High Performance Computing Facility, and access to the HECToR supercomputer through membership of the UKs HPC Materials Chemistry Consortium, which is funded by EPSRC (Grant No. EP/F067496) and the UltraFOx grant

    Bulk electronic, elastic, structural, and dielectric properties of the Weyl semimetal TaAs

    Get PDF
    We present results of electronic structure calculations of the bulk properties of the Weyl semimetal TaAs. The emergence of Weyl (massless) fermions in TaAs, due to its electronic band structure, is indicative of a new state of matter in the condensed phase that is of great interest for fundamental physics and possibly new applications. Many of the physical properties of the material, however, are unknown. We have calculated the structural parameters, dielectric function, elastic constants, phonon dispersion, electronic band structure, and Born effective charges using density functional theory within the generalized gradient approximation, including spin-orbit coupling where necessary. Our results provide essential information on the material; and our calculations agree well with the relatively small number of experimental data available. Moreover, we have determined the relative stability of the ground state body-centered tetragonal phase with respect to other common binary phases as a function of pressure at the athermal limit, predicting a transition to the CsCl cubic structure at 23.3 GPa. Finally, we have determined the band structure using an unbiased hybrid density functional that includes 25% exact exchange, in order to refine the previously determined positions in k space of the Weyl points

    Morphological Features and Band Bending at Nonpolar Surfaces of ZnO

    Get PDF
    We employ hybrid density functional calculations to analyze the structure and stability of the (101̅0) and (112̅0) ZnO surfaces, confirming the relative stability of the two surfaces. We then examine morphological features, including steps, dimer vacancies, and grooves, at the main nonpolar ZnO surface using density functional methods. Calculations explain why steps are common on the (101̅0) surface even at room temperature, as seen in experiment. The surface structure established has been used to obtain the definitive ionization potential and electron affinity of ZnO in good agreement with experiment. The band bending across the surface is analyzed by the decomposition of the density of states for each atomic layer. The upward surface band bending at the (101̅0) surface affects mostly the valence band by 0.32 eV, which results in the surface band gap closing by 0.31 eV; at the (112̅0) surface, the valence band remains flat and the conduction band bends up by 0.18 eV opening the surface band gap by 0.12 eV

    Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand

    Get PDF
    Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time

    Growth and properties of GaSbBi alloys

    Get PDF
    Molecular-beam epitaxy has been used to grow GaSb 1− x Bi x alloys with x up to 0.05. The Bi content, lattice expansion, and film thickness were determined by Rutherford backscattering and x-ray diffraction, which also indicate high crystallinity and that >98% of the Bi atoms are substitutional. The observed Bi-induced lattice dilation is consistent with density functional theory calculations. Optical absorption measurements and valence band anticrossing modeling indicate that the room temperature band gap varies from 720 meV for GaSb to 540 meV for GaSb 0.95Bi0.05, corresponding to a reduction of 36 meV/%Bi or 210 meV per 0.01 Å change in lattice constant

    Thermodynamically accessible titanium clusters TiN, N = 2-32

    Get PDF
    We have performed a genetic algorithm search on the tight-binding interatomic potential energy surface (PES) for small TiN (N = 2-32) clusters. The low energy candidate clusters were further refined using density functional theory (DFT) calculations with the PBEsol exchange-correlation functional and evaluated with the PBEsol0 hybrid functional. The resulting clusters were analysed in terms of their structural features, growth mechanism and surface area. The results suggest a growth mechanism that is based on forming coordination centres by interpenetrating icosahedra, icositetrahedra and Frank-Kasper polyhedra. We identify centres of coordination, which act as centres of bulk nucleation in medium sized clusters and determine the morphological features of the cluster

    Band gap reduction in InNxSb1-x alloys: Optical absorption, k . P modeling, and density functional theory

    Get PDF
    Using infrared absorption, the room temperature band gap of InSb is found to reduce from 174 (7.1 μm) to 85 meV (14.6 μm) upon incorporation of up to 1.13% N, a reduction of ∼79 meV/%N. The experimentally observed band gap reduction in molecular-beam epitaxial InNSb thin films is reproduced by a five band k ⋅· P band anticrossing model incorporating a nitrogen level, EN, 0.75 eV above the valence band maximum of the host InSb and an interaction coupling matrix element between the host conduction band and the N level of β = 1.80 eV. This observation is consistent with the presented results from hybrid density functional theory

    Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato

    No full text
    Pectin is a main component of the plant cell wall and is the most complex family of polysaccharides in nature. Its composition is essential for the normal growth and morphology pattern, as demonstrated by pectin-defective mutant phenotypes. Besides this basic role in plant physiology, in tomato, pectin structure contributes to very important quality traits such as fruit firmness. Sixty-seven different enzymatic activities have been suggested to be required for pectin biosynthesis, but only a few genes have been identified and studied so far. This study characterized the tomato galacturonosyltransferase (GAUT) family and performed a detailed functional study of the GAUT4 gene. The tomato genome harbours all genes orthologous to those described previously in Arabidopsis thaliana, and a transcriptional profile revealed that the GAUT4 gene was expressed at higher levels in developing organs. GAUT4-silenced tomato plants exhibited an increment in vegetative biomass associated with palisade parenchyma enlargement. Silenced fruits showed an altered pectin composition and accumulated less starch along with a reduced amount of pectin, which coincided with an increase in firmness. Moreover, the harvest index was dramatically reduced as a consequence of the reduction in the fruit weight and number. Altogether, these results suggest that, beyond its role in pectin biosynthesis, GAUT4 interferes with carbon metabolism, partitioning, and allocation. Hence, this cell-wall-related gene seems to be key in determining plant growth and fruit production in tomato
    corecore