1,408 research outputs found
The accretion disk in the post period-minimum cataclysmic variable SDSS J080434.20+510349.2
This study of SDSS0804 is primarily concerned with the double-hump shape in
the light curve and its connection with the accretion disk in this bounce-back
system. Time-resolved photometric and spectroscopic observations were obtained
to analyze the behavior of the system between superoutbursts. A geometric model
of a binary system containing a disk with two outer annuli spiral density waves
was applied to explain the light curve and the Doppler tomography. Observations
were carried out during 2008-2009, after the object's magnitude decreased to
V~17.7(0.1) from the March 2006 eruption. The light curve clearly shows a
sinusoid-like variability with a 0.07 mag amplitude and a 42.48 min
periodicity, which is half of the orbital period of the system. In Sept. 2010,
the system underwent yet another superoutburst and returned to its quiescent
level by the beginning of 2012. This light curve once again showed a
double-humps, but with a significantly smaller ~0.01mag amplitude. Other types
of variability like a "mini-outburst" or SDSS1238-like features were not
detected. Doppler tomograms, obtained from spectroscopic data during the same
period of time, show a large accretion disk with uneven brightness, implying
the presence of spiral waves. We constructed a geometric model of a bounce-back
system containing two spiral density waves in the outer annuli of the disk to
reproduce the observed light curves. The Doppler tomograms and the
double-hump-shape light curves in quiescence can be explained by a model system
containing a massive >0.7Msun white dwarf with a surface temperature of
~12000K, a late-type brown dwarf, and an accretion disk with two outer annuli
spirals. According to this model, the accretion disk should be large, extending
to the 2:1 resonance radius, and cool (~2500K). The inner parts of the disk
should be optically thin in the continuum or totally void.Comment: 12 pages, 15 figures, accepted for publication in A&
Temporal evaluation of some commercial fishes in the industrial fishery landings from San Andrés Archipelago, Colombian Caribbean Sea [Poster abstract]
On the nature of the hard X-ray sources SWIFTJ1907.3-2050, IGRJ12123-5802 and IGRJ19552+0044
The INTEGRAL and Swift hard X-ray surveys have identified a large number of
new sources, among which many are proposed as Cataclysmic Variables (CVs). Here
we present the first detailed study of three X-ray selected CVs, Swift
J1907.3-2050, IGRJ12123-5802, and IGRJ19552+0044 based on XMM-Newton, Suzaku,
Swift observations and ground based optical and archival nIR/IR data. Swift
J1907.3-2050 is highly variable from hours to months-years at all wavelengths.
No coherent X-ray pulses are detected but rather transient features. The X-ray
spectrum reveals a multi-temperature optically thin plasma absorbed by complex
neutral material and a soft black body component arising from a small area.
These characteristics are remarkably similar to those observed in magnetic CVs.
A supra-solar abundance of nitrogen could arise from nuclear processed material
from the donor star. Swift J1907.3-2050 could be a peculiar magnetic CV with
the second longest (20.82 h) binary period. IGRJ12123-5802 is variable in the
X-rays on a timescale of ~7.6 h. No coherent pulsations are detected, but its
spectral characteristics suggest that it could be a magnetic CV of the
Intermediate Polar (IP) type. IGRJ19552+0044 shows two X-ray periods, 1.38 h
and 1.69 h and a X-ray spectrum characterized by a multi-temperature plasma
with little absorption.We derive a low accretion rate, consistent with a CV
below the orbital period gap. Its peculiar nIR/IR spectrum suggests a
contribution from cyclotron emission. It could either be a pre-polar or an IP
with the lowest degree of asynchronism.Comment: Accepted for publication in MNRAS. 14 pages, 11 figures, 5 table
IRS Spectra of Solar-Type Stars: \break A Search for Asteroid Belt Analogs
We report the results of a spectroscopic search for debris disks surrounding
41 nearby solar type stars, including 8 planet-bearing stars, using the {\it
Spitzer Space Telescope}. With accurate relative photometry using the Infrared
Spectrometer (IRS) between 7-34 \micron we are able to look for excesses as
small as 2% of photospheric levels with particular sensitivity to weak
spectral features. For stars with no excess, the upper limit in a
band at 30-34 m corresponds to 75 times the brightness of our
zodiacal dust cloud. Comparable limits at 8.5-13 m correspond to
1,400 times the brightness of our zodiacal dust cloud. These limits correspond
to material located within the 1 to 5 AU region that, in our solar
system, originates from debris associated with the asteroid belt. We find
excess emission longward of 25 m from five stars of which four also
show excess emission at 70 m. This emitting dust must be located around
5-10 AU. One star has 70 micron emission but no IRS excess. In this case, the
emitting region must begin outside 10 AU; this star has a known radial velocity
planet. Only two stars of the five show emission shortward of 25 \micron
where spectral features reveal the presence of a population of small, hot dust
grains emitting in the 7-20 m band. The data presented here strengthen the
results of previous studies to show that excesses at 25 \micron and shorter
are rare: only 1 star out of 40 stars older than 1 Gyr or % shows an
excess. Asteroid belts 10-30 times more massive than our own appear are rare
among mature, solar-type stars
Identification of z~>2 Herschel 500 micron sources using color-deconfusion
We present a new method to search for candidate z~>2 Herschel 500{\mu}m
sources in the GOODS-North field, using a S500{\mu}m/S24{\mu}m "color
deconfusion" technique. Potential high-z sources are selected against
low-redshift ones from their large 500{\mu}m to 24{\mu}m flux density ratios.
By effectively reducing the contribution from low-redshift populations to the
observed 500{\mu}m emission, we are able to identify counterparts to high-z
500{\mu}m sources whose 24{\mu}m fluxes are relatively faint. The recovery of
known z~4 starbursts confirms the efficiency of this approach in selecting
high-z Herschel sources. The resulting sample consists of 34 dusty star-forming
galaxies at z~>2. The inferred infrared luminosities are in the range
1.5x10^12-1.8x10^13 Lsun, corresponding to dust-obscured star formation rates
(SFRs) of ~260-3100 Msun/yr for a Salpeter IMF. Comparison with previous SCUBA
850{\mu}m-selected galaxy samples shows that our method is more efficient at
selecting high-z dusty galaxies with a median redshift of z=3.07+/-0.83 and 10
of the sources at z~>4. We find that at a fixed luminosity, the dust
temperature is ~5K cooler than that expected from the Td-LIR relation at z<1,
though different temperature selection effects should be taken into account.
The radio-detected subsample (excluding three strong AGN) follows the
far-infrared/radio correlation at lower redshifts, and no evolution with
redshift is observed out to z~5, suggesting that the far-infrared emission is
star formation dominated. The contribution of the high-z Herschel 500{\mu}m
sources to the cosmic SFR density is comparable to that of SMG populations at
z~2.5 and at least 40% of the extinction-corrected UV samples at z~4
(abridged).Comment: 33 pages in emulateapj format, 24 figures, 2 tables, accepted for
publication in the ApJ
Measuring star formation in high-z massive galaxies: A mid-infrared to submillimeter study of the GOODS NICMOS Survey sample
We present measurements of the mean mid-infrared-to-submillimeter flux
densities of massive (M\ast \approx 2 \times 10^11 Msun) galaxies at redshifts
1.7 < z < 2.9, obtained by stacking positions of known objects taken from the
GOODS NICMOS Survey (GNS) catalog on maps: at 24 {\mu}m (Spitzer/MIPS); 70,
100, and 160{\mu}m (Herschel/PACS); 250, 350, 500{\mu}m (BLAST); and 870{\mu}m
(LABOCA). A modified blackbody spectrum fit to the stacked flux densities
indicates a median [interquartile] star-formation rate of SFR = 63 [48, 81]
Msun yr^-1 . We note that not properly accounting for correlations between
bands when fitting stacked data can significantly bias the result. The galaxies
are divided into two groups, disk-like and spheroid-like, according to their
Sersic indices, n. We find evidence that most of the star formation is
occurring in n \leq 2 (disk-like) galaxies, with median [interquartile] SFR =
122 [100,150] Msun yr^-1, while there are indications that the n > 2
(spheroid-like) population may be forming stars at a median [interquartile] SFR
= 14 [9,20] Msun yr^-1, if at all. Finally, we show that star formation is a
plausible mechanism for size evolution in this population as a whole, but find
only marginal evidence that it is what drives the expansion of the
spheroid-like galaxies.Comment: Accepted by MNRAS. 10 pages, 3 figures, 3 table
- …
