123 research outputs found

    Mediated Homogenization

    Full text link
    Homogenization protocols model the quantum mechanical evolution of a system to a fixed state independently from its initial configuration by repeatedly coupling it with a collection of identical ancillas. Here we analyze these protocols within the formalism of "relaxing" channels providing an easy to check sufficient condition for homogenization. In this context we describe mediated homogenization schemes where a network of connected qudits relaxes to a fixed state by only partially interacting with a bath. We also study configurations which allow us to introduce entanglement among the elements of the network. Finally we analyze the effect of having competitive configurations with two different baths and we prove the convergence to dynamical equilibrium for Heisenberg chains.Comment: 6 pages, 6 figure

    Signal Propagation, Termination, Crosstalk and Losses in Resistive Plate Chambers

    Get PDF
    We discuss the signal propagation, strip termination and crosstalk in Resistive Plate Chambers (RPCs) by analyzing the explicit time domain solution of a two dimensional multi-conductor transmission line. It is shown that all the effects can be calculated by elementary matrix manipulations

    Superballistic Diffusion of Entanglement in Disordered Spin Chains

    Full text link
    We study the dynamics of a single excitation in an infinite XXZ spin chain, which is launched from the origin. We study the time evolution of the spread of entanglement in the spin chain and obtain an expression for the second order spatial moment of concurrence, about the origin, for both ordered and disordered chains. In this way, we show that a finite central disordered region can lead to sustained superballistic growth in the second order spatial moment of entanglement within the chain.Comment: 5 pages, 1 figur

    Quantum control theory and applications: A survey

    Full text link
    This paper presents a survey on quantum control theory and applications from a control systems perspective. Some of the basic concepts and main developments (including open-loop control and closed-loop control) in quantum control theory are reviewed. In the area of open-loop quantum control, the paper surveys the notion of controllability for quantum systems and presents several control design strategies including optimal control, Lyapunov-based methodologies, variable structure control and quantum incoherent control. In the area of closed-loop quantum control, the paper reviews closed-loop learning control and several important issues related to quantum feedback control including quantum filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective, some references are added, published versio

    Estimation of Spin-Spin Interaction by Weak Measurement Scheme

    Full text link
    Precisely knowing an interaction Hamiltonian is crucial to realize quantum information tasks, especially to experimentally demonstrate a quantum computer and a quantum memory. We propose a scheme to experimentally evaluate the spin-spin interaction for a two-qubit system by the weak measurement technique initiated by Yakir Aharonov and his colleagues. Furthermore, we numerically confirm our proposed scheme in a specific system of a nitrogen vacancy center in diamond. This means that the weak measurement can also be taken as a concrete example of the quantum process tomography.Comment: 4 pages, 1 table, 2 figures, to appear in Europhysics Letter

    Use of dynamical coupling for improved quantum state transfer

    Get PDF
    We propose a method to improve quantum state transfer in transmission lines. The idea is to localize the information on the last qubit of a transmission line, by dynamically varying the coupling constants between the first and the last pair of qubits. The fidelity of state transfer is higher then in a chain with fixed coupling constants. The effect is stable against small fluctuations in the system parameters.Comment: 5 pages, 7 figure

    Hamiltonian Determination with Restricted Access in Transverse Field Ising Chain

    Full text link
    We propose a method to evaluate parameters in the Hamiltonian of the Ising chain under site-dependent transverse fields, with a proviso that we can control and measure one of the edge spins only. We evaluate the eigenvalues of the Hamiltonian and the time-evoultion operator exactly for a 3-spin chain, from which we obtain the expectation values of σx\sigma_x of the first spin. The parameters are found from the peak positions of the Fourier transform of the expectation value. There are four assumptions in our method, which are mild enough to be satisfied in many physical systems.Comment: 15pages, 4 figure

    Quantum Control Theory for State Transformations: Dark States and their Enlightenment

    Full text link
    For many quantum information protocols such as state transfer, entanglement transfer and entanglement generation, standard notions of controllability for quantum systems are too strong. We introduce the weaker notion of accessible pairs, and prove an upper bound on the achievable fidelity of a transformation between a pair of states based on the symmetries of the system. A large class of spin networks is presented for which this bound can be saturated. In this context, we show how the inaccessible dark states for a given excitation-preserving evolution can be calculated, and illustrate how some of these can be accessed using extra catalytic excitations. This emphasises that it is not sufficient for analyses of state transfer in spin networks to restrict to the single excitation subspace. One class of symmetries in these spin networks is exactly characterised in terms of the underlying graph properties.Comment: 14 pages, 3 figures v3: rewritten for increased clarit

    Extraction of an Entanglement by Repetition of the Resonant Transmission of an Ancilla Qubit

    Full text link
    A scheme for the extraction of entanglement in two noninteracting qubits (spins) is proposed. The idea is to make use of resonant transmission of ancilla qubit through the two fixed qubits, controlled by the entanglement in the scatterers. Repetition of the resonant transmission extracts the singlet state in the target qubits from their arbitrary given state. Neither the preparation nor the post-selection of the ancilla spin is required, in contrast to the previously proposed schemes.Comment: 14 pages, 7 figure
    corecore