123 research outputs found
Mediated Homogenization
Homogenization protocols model the quantum mechanical evolution of a system
to a fixed state independently from its initial configuration by repeatedly
coupling it with a collection of identical ancillas. Here we analyze these
protocols within the formalism of "relaxing" channels providing an easy to
check sufficient condition for homogenization. In this context we describe
mediated homogenization schemes where a network of connected qudits relaxes to
a fixed state by only partially interacting with a bath. We also study
configurations which allow us to introduce entanglement among the elements of
the network. Finally we analyze the effect of having competitive configurations
with two different baths and we prove the convergence to dynamical equilibrium
for Heisenberg chains.Comment: 6 pages, 6 figure
Signal Propagation, Termination, Crosstalk and Losses in Resistive Plate Chambers
We discuss the signal propagation, strip termination and crosstalk in Resistive Plate Chambers (RPCs) by analyzing the explicit time domain solution of a two dimensional multi-conductor transmission line. It is shown that all the effects can be calculated by elementary matrix manipulations
Superballistic Diffusion of Entanglement in Disordered Spin Chains
We study the dynamics of a single excitation in an infinite XXZ spin chain,
which is launched from the origin. We study the time evolution of the spread of
entanglement in the spin chain and obtain an expression for the second order
spatial moment of concurrence, about the origin, for both ordered and
disordered chains. In this way, we show that a finite central disordered region
can lead to sustained superballistic growth in the second order spatial moment
of entanglement within the chain.Comment: 5 pages, 1 figur
Quantum control theory and applications: A survey
This paper presents a survey on quantum control theory and applications from
a control systems perspective. Some of the basic concepts and main developments
(including open-loop control and closed-loop control) in quantum control theory
are reviewed. In the area of open-loop quantum control, the paper surveys the
notion of controllability for quantum systems and presents several control
design strategies including optimal control, Lyapunov-based methodologies,
variable structure control and quantum incoherent control. In the area of
closed-loop quantum control, the paper reviews closed-loop learning control and
several important issues related to quantum feedback control including quantum
filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective,
some references are added, published versio
Estimation of Spin-Spin Interaction by Weak Measurement Scheme
Precisely knowing an interaction Hamiltonian is crucial to realize quantum
information tasks, especially to experimentally demonstrate a quantum computer
and a quantum memory. We propose a scheme to experimentally evaluate the
spin-spin interaction for a two-qubit system by the weak measurement technique
initiated by Yakir Aharonov and his colleagues. Furthermore, we numerically
confirm our proposed scheme in a specific system of a nitrogen vacancy center
in diamond. This means that the weak measurement can also be taken as a
concrete example of the quantum process tomography.Comment: 4 pages, 1 table, 2 figures, to appear in Europhysics Letter
Use of dynamical coupling for improved quantum state transfer
We propose a method to improve quantum state transfer in transmission lines.
The idea is to localize the information on the last qubit of a transmission
line, by dynamically varying the coupling constants between the first and the
last pair of qubits. The fidelity of state transfer is higher then in a chain
with fixed coupling constants. The effect is stable against small fluctuations
in the system parameters.Comment: 5 pages, 7 figure
Hamiltonian Determination with Restricted Access in Transverse Field Ising Chain
We propose a method to evaluate parameters in the Hamiltonian of the Ising
chain under site-dependent transverse fields, with a proviso that we can
control and measure one of the edge spins only. We evaluate the eigenvalues of
the Hamiltonian and the time-evoultion operator exactly for a 3-spin chain,
from which we obtain the expectation values of of the first spin.
The parameters are found from the peak positions of the Fourier transform of
the expectation value. There are four assumptions in our method, which are mild
enough to be satisfied in many physical systems.Comment: 15pages, 4 figure
Quantum Control Theory for State Transformations: Dark States and their Enlightenment
For many quantum information protocols such as state transfer, entanglement
transfer and entanglement generation, standard notions of controllability for
quantum systems are too strong. We introduce the weaker notion of accessible
pairs, and prove an upper bound on the achievable fidelity of a transformation
between a pair of states based on the symmetries of the system. A large class
of spin networks is presented for which this bound can be saturated. In this
context, we show how the inaccessible dark states for a given
excitation-preserving evolution can be calculated, and illustrate how some of
these can be accessed using extra catalytic excitations. This emphasises that
it is not sufficient for analyses of state transfer in spin networks to
restrict to the single excitation subspace. One class of symmetries in these
spin networks is exactly characterised in terms of the underlying graph
properties.Comment: 14 pages, 3 figures v3: rewritten for increased clarit
Extraction of an Entanglement by Repetition of the Resonant Transmission of an Ancilla Qubit
A scheme for the extraction of entanglement in two noninteracting qubits
(spins) is proposed. The idea is to make use of resonant transmission of
ancilla qubit through the two fixed qubits, controlled by the entanglement in
the scatterers. Repetition of the resonant transmission extracts the singlet
state in the target qubits from their arbitrary given state. Neither the
preparation nor the post-selection of the ancilla spin is required, in contrast
to the previously proposed schemes.Comment: 14 pages, 7 figure
- …
