2,458 research outputs found

    D-Brane Dynamics and NS5 Rings

    Full text link
    We consider the classical motion of a probe D-brane moving in the background geometry of a ring of NS5 branes, assuming that the latter are non-dynamical. We analyse the solutions to the Dirac-Born-Infield (DBI) action governing the approximate dynamics of the system. In the near horizon (throat) approximation we find several exact solutions for the probe brane motion. These are compared to numerical solutions obtained in more general cases. One solution of particular interest is when the probe undergoes oscillatory motion through the centre of the ring (and perpendicular to it). By taking the ring radius sufficiently large, this solution should remain stable to any stringy corrections coming from open-strings stretching between the probe and the NS5-branes along the ring.Comment: 17 pages, Latex, 8 figures; References adde

    D-brane dynamics near compactified NS5-branes

    Full text link
    We examine the dynamics of a DpDp-brane in the background of kk coincident, parallel NSNS5-branes which have had one of their common transverse directions compactified. We find that for small energy, bound orbits can exist at sufficiently large distances where there will be no stringy effects. The orbits are dependent upon the energy density, angular momentum and electric field. The analysis breaks down at radial distances comparable with the compactification radius and we must resort to using a modified form of the harmonic function in this region.Comment: Latex, 20 pages, 6 figs, references adde

    Branonium

    Full text link
    We study the bound states of brane/antibrane systems by examining the motion of a probe antibrane moving in the background fields of N source branes. The classical system resembles the point-particle central force problem, and the orbits can be solved by quadrature. Generically the antibrane has orbits which are not closed on themselves. An important special case occurs for some Dp-branes moving in three transverse dimensions, in which case the orbits may be obtained in closed form, giving the standard conic sections but with a nonstandard time evolution along the orbit. Somewhat surprisingly, in this case the resulting elliptical orbits are exact solutions, and do not simply apply in the limit of asymptotically-large separation or non-relativistic velocities. The orbits eventually decay through the radiation of massless modes into the bulk and onto the branes, and we estimate this decay time. Applications of these orbits to cosmology are discussed in a companion paper.Comment: 34 pages, LaTeX, 4 figures, uses JHEP

    Fuzzy Sphere Dynamics and Non-Abelian DBI in Curved Backgrounds

    Full text link
    We consider the non-Abelian action for the dynamics of NDpN Dp'-branes in the background of MDpM Dp-branes, which parameterises a fuzzy sphere using the SU(2) algebra. We find that the curved background leads to collapsing solutions for the fuzzy sphere except when we have D0D0 branes in the D6D6 background, which is a realisation of the gravitational Myers effect. Furthermore we find the equations of motion in the Abelian and non-Abelian theories are identical in the large NN limit. By picking a specific ansatz we find that we can incorporate angular momentum into the action, although this imposes restriction upon the dimensionality of the background solutions. We also consider the case of non-Abelian non-BPS branes, and examine the resultant dynamics using world-volume symmetry transformations. We find that the fuzzy sphere always collapses but the solutions are sensitive to the combination of the two conserved charges and we can find expanding solutions with turning points. We go on to consider the coincident NSNS5-brane background, and again construct the non-Abelian theory for both BPS and non-BPS branes. In the latter case we must use symmetry arguments to find additional conserved charges on the world-volumes to solve the equations of motion. We find that in the Non-BPS case there is a turning solution for specific regions of the tachyon and radion fields. Finally we investigate the more general dynamics of fuzzy S2k\mathbb{S}^{2k} in the DpDp-brane background, and find collapsing solutions in all cases.Comment: 49 pages, 3 figures, Latex; Version to appear in JHE

    What a difference a term makes:the effect of educational attainment on marital outcomes in the UK

    Get PDF
    Abstract In the past, students in England and Wales born within the first 5 monthsof the academic year could leave school one term earlier than those born later inthe year. Focusing on women, those who were required to stay on an extra termmore frequently hold some academic qualification. Using having been required tostay on as an exogenous factor affecting academic attainment, we find that holding alow-level academic qualification has no effect on the probability of being currentlymarried for women aged 25 or above, but increases the probability of the husbandholding some academic qualification and being economically active.33 Halama

    Geometry of open strings ending on backreacting D3-branes

    Full text link
    We investigate open string theory on backreacting D3-branes using a spacetime approach. We study in detail the half-BPS supergravity solutions describing open strings ending on D3-branes, in the near horizon of the D3-branes. We recover quantitatively several non-trivial features of open string physics including the appearance of D3-brane spikes, the polarization of fundamental strings into D5-branes, and the Hanany-Witten effect. Finally we detail the computation of the gravitational potential between two open strings, and contrast it with the holographic computation of Wilson lines. We argue that the D-brane backreaction has a large influence on the low-energy gravity, which may lead to experimental tests for string theory brane-world scenarios.Comment: 64 pages, 20 figure

    Kahler Moduli Inflation Revisited

    Get PDF
    We perform a detailed numerical analysis of inflationary solutions in Kahler moduli of type IIB flux compactifications. We show that there are inflationary solutions even when all the fields play an important role in the overall shape of the scalar potential. Moreover, there exists a direction of attraction for the inflationary trajectories that correspond to the constant volume direction. This basin of attraction enables the system to have an island of stability in the set of initial conditions. We provide explicit examples of these trajectories, compute the corresponding tilt of the density perturbations power spectrum and show that they provide a robust prediction of n_s approximately 0.96 for 60 e-folds of inflation.Comment: 27 pages, 9 figure

    Geometrical Tachyon Kinks and NS5 Branes

    Full text link
    We further investigate the NSNS5 ring background using the tachyon map. Mapping the radion fields to the rolling tachyon helps to explain the motion of a probe DpDp-brane in this background. It turns out that the radion field becomes tachyonic when the brane is confined to one dimensional motion inside the ring. We find explicit solutions for the geometrical tachyon field that describe stable kink solutions which are similar to those of the open string tachyon. Interestingly in the case of the geometric tachyon, the dynamics is controlled by a cosine potential. In addition, we couple a constant electric field to the probe-brane, but find that the only stable kink solutions occur when there is zero electric field or a critical field value. We also investigate the behaviour of Non-BPS branes in this background, and find that the end state of any probe brane is that of tachyonic matter 'trapped' around the interior of the ring. We conclude by considering compactification of the ring solution in one of the transverse directions.Comment: Latex, 24 pages, 1 eps fig; clarifying comments added to Section 2; typos correcte

    Monitoring Cognitive and Emotional Processes Through Pupil and Cardiac Response During Dynamic Versus Logical Task

    Get PDF
    The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error

    Physical Response Functions of Strongly Coupled Massive Quantum Liquids

    Full text link
    We study physical properties of strongly coupled massive quantum liquids from their spectral functions using the AdS/CFT correspondence. The generic model that we consider is dense, heavy fundamental matter coupled to SU(N_c) super Yang-Mills theory at finite temperature above the deconfinement phase transition but below the scale set by the baryon number density. In this setup, we study the current-current correlators of the baryon number density using new techniques that employ a scaling behavior in the dual geometry. Our results, the AC conductivity, the quasi-particle spectrum and the Drude-limit parameters like the relaxation time are simple temperature-independent expressions that depend only on the mass-squared to density ratio and display a crossover between a baryon- and meson-dominated regime. We concentrated on the (2+1)-dimensional defect case, but in principle our results can also be generalized straightforwardly to other cases.Comment: 21 pages, 10 figures, extra paragraph and figure are added in response to referee's comment
    corecore