49 research outputs found
Growth of (110) Diamond using pure Dicarbon
We use a density-functional based tight-binding method to study diamond
growth steps by depositing dicarbon species onto a hydrogen-free diamond (110)
surface. Subsequent C_2 molecules are deposited on an initially clean surface,
in the vicinity of a growing adsorbate cluster, and finally, near vacancies
just before completion of a full new monolayer. The preferred growth stages
arise from C_2n clusters in near ideal lattice positions forming zigzag chains
running along the [-110] direction parallel to the surface. The adsorption
energies are consistently exothermic by 8--10 eV per C_2, depending on the size
of the cluster. The deposition barriers for these processes are in the range of
0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies
are smaller by 3 eV, but diffusion to more stable positions is feasible. We
also perform simulations of the diffusion of C_2 molecules on the surface in
the vicinity of existing adsorbate clusters using an augmented Lagrangian
penalty method. We find migration barriers in excess of 3 eV on the clean
surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier
heights and pathways indicate that the growth from gaseous dicarbons proceeds
either by direct adsorption onto clean sites or after migration on top of the
existing C_2n chains.Comment: 8 Pages, 7 figure
Temperature Sensitive Nanocapsule of Complex Structural Form for Methane Storage
The processes of methane adsorption, storage and desorption by the nanocapsule are investigated with molecular-dynamic modeling method. The specific nanocapsule shape defines its functioning uniqueness: methane is adsorbed under 40 MPa and at normal temperature with further blocking of methane molecules the K@C601+ endohedral complex in the nanocapsule by external electric field, the storage is performed under normal external conditions, and methane desorption is performed at 350 K. The methane content in the nanocapsule during storage reaches 11.09 mass%. The nanocapsule consists of tree parts: storage chamber, junction and blocking chamber. The storage chamber comprises the nanotube (20,20). The blocking chamber is a short nanotube (20,20) with three holes. The junction consists of the nanotube (10,10) and nanotube (8,8); moreover, the nanotube (8,8) is connected with the storage chamber and nanotube (10,10) with the blocking chamber. The blocking chamber is opened and closed by the transfer of the K@C601+ endohedral complex under electrostatic field action
Recommended from our members
Grain boundaries and mechanical properties of nanocrystalline diamond films.
Phase-pure nanocrystalline diamond thin films grown from plasmas of a hydrogen-poor carbon argon gas mixture have been analyzed regarding their hardness and elastic moduli by means of a microindentor and a scanning acoustic microscope.The films are superhard and the moduli rival single crystal diamond. In addition, Raman spectroscopy with an excitation wavelength of 1064 nm shows a peak at 1438 l/cm and no peak above 1500 l/cm, and X-ray photoelectron spectroscopy a shake-up loss at 4.2 eV. This gives strong evidence for the existence of solitary double bonds in the films. The hardness and elasticity of the films then are explained by the assumption, that the solitary double bonds interconnect the nanocrystals in the films, leading to an intergrain boundary adhesion of similar strength as the intragrain diamond cohesion. The results are in good agreement with recent simulations of high-energy grain boundaries
Stability, reconstruction, and electronic properties of diamond (100) and (111) surfaces
Fabrication of MEMS Components Based on Ultrananocrystalline Diamond Thin Films and Characterization of Mechanical Properties
ABSTRACTThe mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of MEMS components. However, conventional CVD diamond deposition methods result in either a coarse-grained pure diamond structure that prevents high- resolution patterning, or in a fine-grained diamond film with a significant amount of intergranular non-diamond carbon. At Argonne National Laboratory, we are able to produce phase-pure ultrananocrystalline diamond (UNCD) films for the fabrication of MEMS components. UNCD is grown by microwave plasma CVD using C60-Ar or CH4-Ar plasmas, resulting in films that have 3-5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, and can have mechanical properties similar to that of single crystal diamond. We used lithographic patterning, lift-off, and etching, in conjunction with the capability for growing UNCD on SiO2 to fabricate 2-D and 3-D UNCD-MEMS structures. We have performed initial characterization of mechanical properties by using nanoindentation and in-situ TEM indentor techniques. The values of Hardness (∼88 GPa) and Young's modulus (∼ 864 GPa) measured are very close to those of single crystal diamond (100 GPa and 1000 GPa respectively). The results show that UNCD is a promising material for future high performance MEMS devices.</jats:p
