249 research outputs found
Functional specialization within the inferior parietal lobes across cognitive domains
The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated hemispheric specialization in the IPL supports some of the most distinctive human mental capacities
Longitudinal microstructural changes in 18 amygdala nuclei resonate with cortical circuits and phenomics.
The amygdala nuclei modulate distributed neural circuits that most likely evolved to respond to environmental threats and opportunities. So far, the specific role of unique amygdala nuclei in the context processing of salient environmental cues lacks adequate characterization across neural systems and over time. Here, we present amygdala nuclei morphometry and behavioral findings from longitudinal population data (>1400 subjects, age range 40-69 years, sampled 2-3 years apart): the UK Biobank offers exceptionally rich phenotyping along with brain morphology scans. This allows us to quantify how 18 microanatomical amygdala subregions undergo plastic changes in tandem with coupled neural systems and delineating their associated phenome-wide profiles. In the context of population change, the basal, lateral, accessory basal, and paralaminar nuclei change in lockstep with the prefrontal cortex, a region that subserves planning and decision-making. The central, medial and cortical nuclei are structurally coupled with the insular and anterior-cingulate nodes of the salience network, in addition to the MT/V5, basal ganglia, and putamen, areas proposed to represent internal bodily states and mediate attention to environmental cues. The central nucleus and anterior amygdaloid area are longitudinally tied with the inferior parietal lobule, known for a role in bodily awareness and social attention. These population-level amygdala-brain plasticity regimes in turn are linked with unique collections of phenotypes, ranging from social status and employment to sleep habits and risk taking. The obtained structural plasticity findings motivate hypotheses about the specific functions of distinct amygdala nuclei in humans
Population modeling with machine learning can enhance measures of mental health
Background: Biological aging is revealed by physical measures, e.g., DNA probes or brain scans. In contrast, individual differences in mental function are explained by psychological constructs, e.g., intelligence or neuroticism. These constructs are typically assessed by tailored neuropsychological tests that build on expert judgement and require careful interpretation. Could machine learning on large samples from the general population be used to build proxy measures of these constructs that do not require human intervention? Results: Here, we built proxy measures by applying machine learning on multimodal MR images and rich sociodemographic information from the largest biomedical cohort to date: the UK Biobank. Objective model comparisons revealed that all proxies captured the target constructs and were as useful, and sometimes more useful, than the original measures for characterizing real-world health behavior (sleep, exercise, tobacco, alcohol consumption). We observed this complementarity of proxy measures and original measures at capturing multiple health-related constructs when modeling from, both, brain signals and sociodemographic data. Conclusion: Population modeling with machine learning can derive measures of mental health from heterogeneous inputs including brain signals and questionnaire data. This may complement or even substitute for psychometric assessments in clinical populations
Inhibition of the inferior parietal lobe triggers state-dependent network adaptations
The human brain comprises large-scale networks that flexibly interact to support diverse cognitive functions and adapt to variability in daily life. The inferior parietal lobe (IPL) is a hub of multiple brain networks that sustain various cognitive domains. It remains unclear how networks respond to acute regional perturbations to maintain normal function. To provoke network-level adaptive responses to local inhibition, we combined offline transcranial magnetic stimulation (TMS) over left or right IPL with neuroimaging during attention, semantic and social cognition tasks, and rest. Across tasks, TMS specifically affected task-active network activity with inhibition and facilitation. Network interaction responses differed between rest and tasks. After TMS over both IPL regions, large-scale network interactions were exclusively facilitated at rest, but mainly inhibited during tasks. Overall, responses to TMS primarily occurred in and between domain-general default mode and frontoparietal subnetworks. These findings elucidate short-term adaptive plasticity in response to network node inhibition
More Than Meets the Eye: Art Engages the Social Brain
Here we present the viewpoint that art essentially engages the social brain, by demonstrating how art processing maps onto the social brain connectome-the most comprehensive diagram of the neural dynamics that regulate human social cognition to date. We start with a brief history of the rise of neuroaesthetics as the scientific study of art perception and appreciation, in relation to developments in contemporary art practice and theory during the same period. Building further on a growing awareness of the importance of social context in art production and appreciation, we then set out how art engages the social brain and outline candidate components of the "artistic brain connectome." We explain how our functional model for art as a social brain phenomenon may operate when engaging with artworks. We call for closer collaborations between the burgeoning field of neuroaesthetics and arts professionals, cultural institutions and diverse audiences in order to fully delineate and contextualize this model. Complementary to the unquestionable value of art for art's sake, we argue that its neural grounding in the social brain raises important practical implications for mental health, and the care of people living with dementia and other neurological conditions
Representational ethical model calibration
Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence – evidence-based or intuitive – guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multidimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration. We demonstrate the use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains
Bayesian modelling disentangles language versus executive control disruption in stroke
Stroke is the leading cause of long-term disability worldwide. Incurred brain damage can disrupt cognition, often with persisting deficits in language and executive capacities. Yet, despite their clinical relevance, the commonalities, and differences of language versus executive control impairments remain under-specified. To fill this gap, we tailored a Bayesian hierarchical modeling solution in a largest-of-its-kind cohort (1080 patients with stroke) to deconvolve language and executive control with respect to the stroke topology. Cognitive function was assessed with a rich neuropsychological test battery including global cognitive function (tested with the Mini Mental State Exam), language (assessed with a picture naming task), executive speech function (tested with verbal fluency tasks), executive control functions (Trail Making Test and Digit Symbol Coding Task), visuospatial functioning (Rey Complex Figure), as well as verbal learning and memory function (Soul Verbal Learning). Bayesian modeling predicted interindividual differences in eight cognitive outcome scores 3 months after stroke based on specific tissue lesion topologies. A multivariate factor analysis extracted four distinct cognitive factors that distinguish left- and right-hemispheric contributions to ischemic tissue lesions. These factors were labeled according to the neuropsychological tests that had the strongest factor loadings: One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized mental flexibility, task switching and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two distinct factors that were labeled as executive speech functions and verbal memory. Impairments on both factors were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke
- …
