6,345 research outputs found

    Anomalies and symmetries of the regularized action

    Get PDF
    We show that the Pauli-Villars regularized action for a scalar field in a gravitational background in 1+1 dimensions has, for any value of the cutoff M, a symmetry which involves non-local transformations of the regulator field plus (local) Weyl transformations of the metric tensor. These transformations, an extension to the regularized action of the usual Weyl symmetry transformations of the classical action, lead to a new interpretation of the conformal anomaly in terms of the (non-anomalous) Jacobian for this symmetry. Moreover, the Jacobian is automatically regularized, and yields the correct result when the masses of the regulators tend to infinity. In this limit the transformations, which are non-local in a scale of 1/M, become the usual Weyl transformation of the metric. We also present the example of the chiral anomaly in 1+1 dimensions.Comment: 13 pages, Late

    Pyrone-based inhibitors of metalloproteinase types 2 and 3 may work as conformation-selective inhibitors.

    Get PDF
    Matrix metalloproteinases are zinc-containing enzymes capable of degrading all components of the extracellular matrix. Owing to their role in human disease, matrix metalloproteinase have been the subject of extensive study. A bioinorganic approach was recently used to identify novel inhibitors based on a maltol zinc-binding group, but accompanying molecular-docking studies failed to explain why one of these inhibitors, AM-6, had approximately 2500-fold selectivity for MMP-3 over MMP-2. A number of studies have suggested that the matrix-metalloproteinase active site is highly flexible, leading some to speculate that differences in active-site flexibility may explain inhibitor selectivity. To extend the bioinorganic approach in a way that accounts for MMP-2 and MMP-3 dynamics, we here investigate the predicted binding modes and energies of AM-6 docked into multiple structures extracted from matrix-metalloproteinase molecular dynamics simulations. Our findings suggest that accounting for protein dynamics is essential for the accurate prediction of binding affinity and selectivity. Additionally, AM-6 and other similar inhibitors likely select for and stabilize only a subpopulation of all matrix-metalloproteinase conformations sampled by the apo protein. Consequently, when attempting to predict ligand affinity and selectivity using an ensemble of protein structures, it may be wise to disregard protein conformations that cannot accommodate the ligand

    Applications of an exact counting formula in the Bousso-Polchinski Landscape

    Full text link
    The Bousso-Polchinski (BP) Landscape is a proposal for solving the Cosmological Constant Problem. The solution requires counting the states in a very thin shell in flux space. We find an exact formula for this counting problem which has two simple asymptotic regime one of them being the method of counting low Λ\Lambda states given originally by Bousso and Polchinski. We finally give some applications of the extended formula: a robust property of the Landscape which can be identified with an effective occupation number, an estimator for the minimum cosmological constant and a possible influence on the KKLT stabilization mechanism.Comment: 43 pages, 11 figures, 2 appendices. We have added a new section (3.4) on the influence of the fraction of non-vanishing fluxes in the KKLT mechanism. Other minor changes also mad

    Functional approach to quantum friction: effective action and dissipative force

    Get PDF
    We study the Casimir friction due to the relative, uniform, lateral motion of two parallel semitransparent mirrors coupled to a vacuum real scalar field, ϕ\phi. We follow a functional approach, whereby nonlocal terms in the action for ϕ\phi, concentrated on the mirrors' locii, appear after functional integration of the microscopic degrees of freedom. This action for ϕ\phi, which incorporates the relevant properties of the mirrors, is then used as the starting point for two complementary evaluations: Firstly, we calculate the { in-out} effective action for the system, which develops an imaginary part, hence a non-vanishing probability for the decay (because of friction) of the initial vacuum state. Secondly, we evaluate another observable: the vacuum expectation value of the frictional force, using the { in-in} or Closed Time Path formalism. Explicit results are presented for zero-width mirrors and half-spaces, in a model where the microscopic degrees of freedom at the mirrors are a set of identical quantum harmonic oscillators, linearly coupled to $\phi

    Highly Enhanced Vapor Sensing of Multiwalled Carbon Nanotube Network Sensors by n-Butylamine Functionalization

    Get PDF
    The sensing of volatile organic compounds by multiwall carbon nanotube networks of randomly entangled pristine nanotubes or the nanotubes functionalized by n-butylamine, which were deposited on polyurethane supporting electrospinned nonwoven membrane, has been investigated. The results show that the sensing of volatile organic compounds by functionalized nanotubes considerably increases with respect to pristine nanotubes. The increase is highly dependent on used vapor polarity. For the case of highly polar methanol, the functionalized MWCNT network exhibits even more than eightfold higher sensitivity in comparison to the network prepared from pristine nanotubes.Fil: Slobodian, P.. Tomas Bata University; República ChecaFil: Riha, P.. Academy of Sciences; República ChecaFil: Cavallo, Pablo César. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Benlikaya, R.. Tomas Bata University; República Checa. Balikesir University; TurquíaFil: Cvelbar, U.. Jozef Stefan Institute; EsloveniaFil: Petras, D.. Tomas Bata University; República ChecaFil: Saha, P.. Tomas Bata University; República Chec

    Discrete Formulation for the dynamics of rods deforming in space

    Full text link
    We describe the main ingredients needed to create, from the smooth lagrangian density, a variational principle for discrete motions of a discrete rod, with corresponding conserved Noether currents. We describe all geometrical objects in terms of elements on the linear Atiyah bundle, using a reduced forward difference operator. We show how this introduces a discrete lagrangian density that models the discrete dynamics of a discrete rod. The presented tools are general enough to represent a discretization of any variational theory in principal bundles, and its simplicity allows to perform an iterative integration algorithm to compute the discrete rod evolution in time, starting from any predefined configurations of all discrete rod elements at initial times
    corecore