3,379 research outputs found
Differential radio astronomy of galactic objects
A differential astrometry technique is discussed. An improved proper motion and a parallax limit for pulsar 1929 + 10 is presented as well as a limit on the space velocity of the enigmatic object in SgrA
Multifrequency Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21
Giant pulses are short, intense outbursts of radio emission with a power-law
intensity distribution that have been observed from the Crab Pulsar and PSR
B1937+21. We have undertaken a systematic study of giant pulses from PSR
B1937+21 using the Arecibo telescope at 430, 1420, and 2380 MHz. At 430 MHz,
interstellar scattering broadens giant pulses to durations of secs,
but at higher frequencies the pulses are very short, typically lasting only
-secs. At each frequency, giant pulses are emitted only in narrow
(\lsim10 \mus) windows of pulse phase located -sec after the
main and interpulse peaks. Although some pulse-to-pulse jitter in arrival times
is observed, the mean arrival phase appears stable; a timing analysis of the
giant pulses yields precision competitive with the best average profile timing
studies. We have measured the intensity distribution of the giant pulses,
confirming a roughly power-law distribution with approximate index of -1.8,
contributing \gsim0.1% to the total flux at each frequency. We also find that
the intensity of giant pulses falls off with a slightly steeper power of
frequency than the ordinary radio emission.Comment: 21 pages, 10 Postscript figures; LaTeX with aaspp4.sty and epsf.tex;
submitted to Ap
Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries
We calculate the expected nHz--Hz gravitational wave (GW) spectrum from
coalescing Massive Black Hole (MBH) binaries resulting from mergers of their
host galaxies. We consider detection of this spectrum by precision pulsar
timing and a future Pulsar Timing Array. The spectrum depends on the merger
rate of massive galaxies, the demographics of MBHs at low and high redshift,
and the dynamics of MBH binaries. We apply recent theoretical and observational
work on all of these fronts. The spectrum has a characteristic strain
, just below the detection limit from
recent analysis of precision pulsar timing measurements. However, the amplitude
of the spectrum is still very uncertain owing to approximations in the
theoretical formulation of the model, to our lack of knowledge of the merger
rate and MBH population at high redshift, and to the dynamical problem of
removing enough angular momentum from the MBH binary to reach a GW-dominated
regime.Comment: 31 Pages, 8 Figures, small changes to match the published versio
Radio-wave propagation through a medium containing electron-density fluctuations described by an anisotropic Goldreich-Sridhar spectrum
We study the propagation of radio waves through a medium possessing density
fluctuations that are elongated along the ambient magnetic field and described
by an anisotropic Goldreich-Sridhar power spectrum. We derive general formulas
for the wave phase structure function, visibility, angular broadening,
diffraction-pattern length scales, and scintillation time scale for arbitrary
distributions of turbulence along the line of sight, and specialize these
formulas to idealized cases.Comment: 25 pages, 3 figures, submitted to Ap
- …
