23,770 research outputs found
Mixed potentials in radiative stellar collapse
We study the behaviour of a radiating star when the interior expanding,
shearing fluid particles are traveling in geodesic motion. We demonstrate that
it is possible to obtain new classes of exact solutions in terms of elementary
functions without assuming a separable form for the gravitational potentials or
initially fixing the temporal evolution of the model unlike earlier treatments.
A systematic approach enables us to write the junction condition as a Riccati
equation which under particular conditions may be transformed into a separable
equation. New classes of solutions are generated which allow for mixed spatial
and temporal dependence in the metric functions. We regain particular models
found previously from our general classes of solutions.Comment: 10 pages, To appear in J. Math. Phy
Design and in Vitro Evaluation of a New Nano-Microparticulate System for Enhanced Aqueous-Phase Solubility of Curcumin
Curcumin, a yellow polyphenol derived from the turmeric Curcuma longa, has been associated with a diverse therapeutic potential including anti-inflammatory, antioxidant, antiviral, and anticancer properties. However, the poor aqueous solubility and low bioavailability of curcumin have limited its potential when administrated orally. In this study, curcumin was encapsulated in a series of novel nano-microparticulate systems developed to improve its aqueous solubility and stability. The nano-microparticulate systems are based entirely on biocompatible, biodegradable, and edible polymers including chitosan, alginate, and carrageenan. The particles were synthesized via ionotropic gelation. Encapsulating the curcumin into the hydrogel nanoparticles yielded a homogenous curcumin dispersion in aqueous solution compared to the free form of curcumin. Also, the in vitro release profile showed up to 95% release of curcumin from the developed nano-microparticulate systems after 9 hours in PBS at pH 7.4 when freeze-dried particles were used.CONACYTCUPIAPharmac
Dissipative fluids out of hydrostatic equilibrium
In the context of the M\"{u}ller-Israel-Stewart second order phenomenological
theory for dissipative fluids, we analyze the effects of thermal conduction and
viscosity in a relativistic fluid, just after its departure from hydrostatic
equilibrium, on a time scale of the order of relaxation times. Stability and
causality conditions are contrasted with conditions for which the ''effective
inertial mass'' vanishes.Comment: 21 pages, 1 postscript figure (LaTex 2.09 and epsfig.sty required)
Submitted to Classical and Quantum Gravit
Charging Interacting Rotating Black Holes in Heterotic String Theory
We present a formulation of the stationary bosonic string sector of the whole
toroidally compactified effective field theory of the heterotic string as a
double Ernst system which, in the framework of General Relativity describes, in
particular, a pair of interacting spinning black holes; however, in the
framework of low--energy string theory the double Ernst system can be
particularly interpreted as the rotating field configuration of two interacting
sources of black hole type coupled to dilaton and Kalb--Ramond fields. We
clarify the rotating character of the --component of the
antisymmetric tensor field of Kalb--Ramond and discuss on its possible torsion
nature. We also recall the fact that the double Ernst system possesses a
discrete symmetry which is used to relate physically different string vacua.
Therefore we apply the normalized Harrison transformation (a charging symmetry
which acts on the target space of the low--energy heterotic string theory
preserving the asymptotics of the transformed fields and endowing them with
multiple electromagnetic charges) on a generic solution of the double Ernst
system and compute the generated field configurations for the 4D effective
field theory of the heterotic string. This transformation generates the
vector field content of the whole low--energy heterotic string
spectrum and gives rise to a pair of interacting rotating black holes endowed
with dilaton, Kalb--Ramond and multiple electromagnetic fields where the charge
vectors are orthogonal to each other.Comment: 15 pages in latex, revised versio
Some analytical models of radiating collapsing spheres
We present some analytical solutions to the Einstein equations, describing
radiating collapsing spheres in the diffusion approximation. Solutions allow
for modeling physical reasonable situations. The temperature is calculated for
each solution, using a hyperbolic transport equation, which permits to exhibit
the influence of relaxational effects on the dynamics of the system.Comment: 17 pages Late
Charged Dual String Vacua from Interacting Rotating Black Holes Via Discrete and Nonlinear Symmetries
Using the stationary formulation of the toroidally compactified heterotic
string theory in terms of a pair of matrix Ernst potentials we consider the
four-dimensional truncation of this theory with no U(1) vector fields excited.
Imposing one time-like Killing vector permits us to express the stationary
effective action as a model in which gravity is coupled to a matrix Ernst
potential which, under certain parametrization, allows us to interpret the
matter sector of this theory as a double Ernst system. We generate a web of
string vacua which are related to each other via a set of discrete symmetries
of the effective action (some of them involve S-duality transformations and
possess non-perturbative character). Some physical implications of these
discrete symmetries are analyzed and we find that, in some particular cases,
they relate rotating black holes coupled to a dilaton with no Kalb--Ramond
field, static black holes with non-trivial dilaton and antisymmetric tensor
fields, and rotating and static naked singularities. Further, by applying a
nonlinear symmetry, namely, the so-called normalized Harrison transformation,
on the seed field configurations corresponding to these neutral backgrounds, we
recover the U(1)^n Abelian vector sector of the four-dimensional action of the
heterotic string, charging in this way the double Ernst system which
corresponds to each one of the neutral string vacua, i.e., the stationary and
the static black holes and the naked singularities.Comment: 19 pages in latex, added referenc
Stationary Cylindrical Anisotropic Fluid
We present the whole set of equations with regularity and matching conditions
required for the description of physically meaningful stationary cylindrically
symmmetric distributions of matter, smoothly matched to Lewis vacuum spacetime.
A specific example is given. The electric and magnetic parts of the Weyl tensor
are calculated, and it is shown that purely electric solutions are necessarily
static. Then, it is shown that no conformally flat stationary cylindrical fluid
exits, satisfying regularity and matching conditions.Comment: 17 pages Latex. To appear in Gen.Rel.Gra
Formation and structural chemistry of the unusual cyanide-bridged dinuclear species [Ru-2(NN)(2)(CN)(7)](3-)(NN=2,2 '-bipyridine or 1,10-phenanthroline)
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)(4)](2) (NN = 2,2'-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)(4)](2) salts, in the formation of small amounts of salts of the dinuclear species [Ru-2(NN)(2)(CN)(7)](3). These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)(4)](2) following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)(5.5)][Ru-2(bipy)(2)(CN)(7)] center dot 11H(2)O and [Pr(H2O)(6)][Ru-2(phen)(2)(CN)(7)] center dot 9H(2)O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru(2)Ln(2)(mu-CN)(4) squares and Ru(4)Ln(2)(mu-CN)(6) hexagons, which alternate to form a one-dimensional chain. In [CH6N3](3)[Ru-2(bipy)(2)(CN)(7)] center dot 2H(2)O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru-2(NN)(2)(CN)(7)](3) anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4'-Bu-t(2)-2,2'-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3](2)[Ru((t)Bu(2)bipy)(CN)(4)] center dot 2H(2)O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru-2(phen)(2)(CN)(7)](3) could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)(4)](2) if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru-2(bipy)(2)(CN)(7)](3) (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)(4)](2), with a (MLCT)-M-3 emission at 581 nm
- …
