2,097,096 research outputs found
Prehension and perception of size in left visual neglect
Right hemisphere damaged patients with and without left visual neglect, and age-matched controls had objects of various sizes presented within left or right body hemispace. Subjects were asked to estimate the objects’ sizes or to reach out and grasp them, in order to assess visual size processing in perceptual-experiential and action-based contexts respectively. No impairments of size processing were detected in the prehension performance of the neglect patients but a generalised slowing of movement was observed, associated with an extended deceleration phase. Additionally both patient groups reached maximum grip aperture relatively later in the movement than did controls. For the estimation task it was predicted that the left visual neglect group would systematically underestimate the sizes of objects presented within left hemispace but no such abnormalities were observed. Possible reasons for this unexpected null finding are discussed
Differential Imaging with a Multicolor Detector Assembly: A New ExoPlanet Finder Concept
Simultaneous spectral differential imaging is a high contrast technique by
which subtraction of simultaneous images reduces noise from atmospheric
speckles and optical aberrations. Small non-common wave front errors between
channels can seriously degrade its performance. We present a new concept, a
multicolor detector assembly (MCDA), which can eliminate this problem. The
device consists of an infrared detector and a microlens array onto the flat
side of which a checkerboard pattern of narrow-band micro-filters is deposited,
each micro-filter coinciding with a microlens. Practical considerations for
successful implementation of the technique are mentioned. Numerical simulations
predict a noise attenuation of 10^-3 at 0.5" for a 10^5 seconds integration on
a mH=5 star of Strehl ratio 0.9 taken with an 8-m telescope. This reaches a
contrast of 10^-7 at an angular distance of 0.5" from the center of the star
image.Comment: 13 pages, 5 figures, accepted APJ
Debris Thickness of Glaciers in the Everest Area (Nepal Himalaya) Derived from Satellite Imagery Using a Nonlinear Energy Balance Model
Debris thickness is an important characteristic of debris-covered glaciers in the Everest region of the Himalayas. The debris thickness controls the melt rates of the glaciers, which has large implications for hydrologic models, the glaciers' response to climate change, and the development of glacial lakes. Despite its importance, there is little knowledge of how the debris thickness varies over these glaciers. This paper uses an energy balance model in conjunction with Landsat7 Enhanced Thematic Mapper Plus (ETM+) satellite imagery to derive thermal resistances, which are the debris thickness divided by the thermal conductivity. Model results are reported in terms of debris thickness using an effective thermal conductivity derived from field data. The developed model accounts for the nonlinear temperature gradient in the debris cover to derive reasonable debris thicknesses. Fieldwork performed on Imja-Lhotse Shar Glacier in September 2013 was used to compare to the modeled debris thicknesses. Results indicate that accounting for the nonlinear temperature gradient is crucial. Furthermore, correcting the incoming shortwave radiation term for the effects of topography and resampling to the resolution of the thermal band's pixel is imperative to deriving reasonable debris thicknesses. Since the topographic correction is important, the model will improve with the quality of the digital elevation model (DEM). The main limitation of this work is the poor resolution (60m) of the satellite's thermal band. The derived debris thicknesses are reasonable at this resolution, but trends related to slope and aspect are unable to be modeled on a finer scale. Nonetheless, the study finds this model derives reasonable debris thicknesses on this scale and was applied to other debris-covered glaciers in the Everest region.USAID Climate Change Resilient Development (CCRD) projectCenter for Research in Water Resource
Hybrid Monte Carlo Simulation of Graphene on the Hexagonal Lattice
We present a method for direct hybrid Monte Carlo simulation of graphene on
the hexagonal lattice. We compare the results of the simulation with exact
results for a unit hexagonal cell system, where the Hamiltonian can be solved
analytically.Comment: 5 pages, 4 figure
Multi-line detection of O_2 toward ρ Ophiuchi A
Context. Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O_2, and water, H_(2)O. These high abundances imply high cooling rates, leading to relatively short timescales for the evolution of gravitationally unstable dense cores, forming stars and planets. Contrary to expectations, the dedicated space missions SWAS and Odin typically found only very small amounts of water vapour and essentially no O_2 in the dense star-forming interstellar medium.
Aims. Only toward ρOph A did Odin detect a very weak line of O_2 at 119 GHz in a beam of size 10 arcmin. The line emission of related molecules changes on angular scales of the order of some tens of arcseconds, requiring a larger telescope aperture such as that of the Herschel Space Observatory to resolve the O2 emission and pinpoint its origin.
Methods. We use the Heterodyne Instrument for the Far Infrared (HIFI) aboard Herschel to obtain high resolution O_2 spectra toward selected positions in the ρOph A core. These data are analysed using standard techniques for O_2 excitation and compared to recent PDR-like chemical cloud models.
Results. The N_J = 3_(3) − 1_(2) line at 487.2 GHz is clearly detected toward all three observed positions in the ρOph A core. In addition, an oversampled map of the 5_(4)−3_(4) transition at 773.8 GHz reveals the detection of the line in only half of the observed area. On the basis of their ratios, the temperature of the O_2 emitting gas appears to vary quite substantially, with warm gas (≳ 50K) being adjacent to a much colder region, of temperatures lower than 30 K.
Conclusions. The exploited models predict that the O_2 column densities are sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these models, the observationally determined O_2 column densities do not seem to depend strongly on the derived gas temperatures, but fall into the range N(O_2) = 3 to ≳ 6 × 10^(15) cm^(-2). Beam-averaged O2 abundances are about 5 × 10^(-8) relative to H_2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz in the range of 4 to 5 arcmin, encompassing the entire ρOph A core. We speculate that one of the reasons for the generally very low detection rate of O2 is the short period of time during which O_2 molecules are reasonably abundant in molecular clouds
- …
