914 research outputs found
Calibration of a single atom detector for atomic micro chips
We experimentally investigate a scheme for detecting single atoms
magnetically trapped on an atom chip. The detector is based on the
photoionization of atoms and the subsequent detection of the generated ions. We
describe the characterization of the ion detector with emphasis on its
calibration via the correlation of ions with simultaneously generated
electrons. A detection efficiency of 47.8% (+-2.6%) is measured, which is
useful for single atom detection, and close to the limit allowing atom counting
with sub-Poissonian uncertainty
Growth dynamics of a Bose-Einstein condensate in a dimple trap without cooling
We study the formation of a Bose-Einstein condensate in a cigar-shaped
three-dimensional harmonic trap, induced by the controlled addition of an
attractive "dimple" potential along the weak axis. In this manner we are able
to induce condensation without cooling due to a localized increase in the phase
space density. We perform a quantitative analysis of the thermodynamic
transformation in both the sudden and adiabatic regimes for a range of dimple
widths and depths. We find good agreement with equilibrium calculations based
on self-consistent semiclassical Hartree-Fock theory describing the condensate
and thermal cloud. We observe there is an optimal dimple depth that results in
a maximum in the condensate fraction. We also study the non-equilibrium
dynamics of condensate formation in the sudden turn-on regime, finding good
agreement for the observed time dependence of the condensate fraction with
calculations based on quantum kinetic theory.Comment: v1: 9 pages, 7 figures, submitted to Phys. Rev. A; v2: 10 pages, 8
figures, fixed typos, added references, additional details on experimental
procedure, values of phase-space density, new figure and discussion on
effects of three-body loss in Appendix B (replaced with published version
Laser frequency locking by direct measurement of detuning
We present a new method of laser frequency locking in which the feedback
signal is directly proportional to the detuning from an atomic transition, even
at detunings many times the natural linewidth of the transition. Our method is
a form of sub-Doppler polarization spectroscopy, based on measuring two Stokes
parameters ( and ) of light transmitted through a vapor cell. This
extends the linear capture range of the lock loop by up to an order of
magnitude and provides equivalent or improved frequency discrimination as other
commonly used locking techniques.Comment: 4 pages, 4 figures Revte
Observation of shock waves in a large Bose-Einstein condensate
We observe the formation of shock waves in a Bose-Einstein condensate
containing a large number of sodium atoms. The shock wave is initiated with a
repulsive, blue-detuned light barrier, intersecting the BEC, after which two
shock fronts appear. We observe breaking of these waves when the size of these
waves approaches the healing length of the condensate. At this time, the wave
front splits into two parts and clear fringes appear. The experiment is modeled
using an effective 1D Gross-Pitaevskii-like equation and gives excellent
quantitative agreement with the experiment, even though matter waves with
wavelengths two orders of magnitude smaller than the healing length are
present. In these experiments, no significant heating or particle loss is
observed.Comment: 7 pages, 7 figure
Analysis of dynamical tunnelling experiments with a Bose-Einstein condensate
Dynamical tunnelling is a quantum phenomenon where a classically forbidden
process occurs, that is prohibited not by energy but by another constant of
motion. The phenomenon of dynamical tunnelling has been recently observed in a
sodium Bose-Einstein condensate. We present a detailed analysis of these
experiments using numerical solutions of the three dimensional Gross-Pitaevskii
equation and the corresponding Floquet theory. We explore the parameter
dependency of the tunnelling oscillations and we move the quantum system
towards the classical limit in the experimentally accessible regime.Comment: accepted for publication in Physical Review
Momentum of an electromagnetic wave in dielectric media
Almost a hundred years ago, two different expressions were proposed for the
energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowski's
tensor predicted an increase in the linear momentum of the wave on entering a
dielectric medium, whereas Abraham's tensor predicted its decrease. Theoretical
arguments were advanced in favour of both sides, and experiments proved
incapable of distinguishing between the two. Yet more forms were proposed, each
with their advocates who considered the form that they were proposing to be the
one true tensor. This paper reviews the debate and its eventual conclusion:
that no electromagnetic wave energy--momentum tensor is complete on its own.
When the appropriate accompanying energy--momentum tensor for the material
medium is also considered, experimental predictions of all the various proposed
tensors will always be the same, and the preferred form is therefore
effectively a matter of personal choice.Comment: 23 pages, 3 figures, RevTeX 4. Removed erroneous factor of mu/mu_0
from Eq.(44
Light guiding light: Nonlinear refraction in rubidium vapor
Recently there has been experimental and theoretical interest in cross-dispersion effects in rubidium vapor, which allows one beam of light to be guided by another. We present theoretical results which account for the complications created by the D line hyperfine structure of rubidium as well as the presence of the two major isotopes of rubidium. This allows the complex frequency dependence of the effects observed in our experiments to be understood and lays the foundation for future studies of nonlinear propagation
The plane-and spherical-wave descriptions of electromagnetic radiation: A comparison and discussion of their relative merits
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Wild-type but not mutant huntingtin modulates the transcriptional activity of liver X receptors
International audienceHuntington's disease is caused by expansion of a polyglutamine tract found in the amino-terminal of the ubiquitously expressed protein huntingtin. Well studied in its mutant form, huntingtin has a wide variety of normal functions, loss of which may also contribute to disease progression. Widespread transcriptional dysfunction occurs in brains of huntington's disease patients and in transgenic mouse and cell models of huntington's disease. To identify new transcriptional pathways altered by the normal and/or abnormal function of huntingtin, we probed several nuclear receptors, normally expressed in the brain, for binding to huntingtin in its mutant and wild-type forms. Wild-type huntingtin could bind to a number of nuclear receptors; LXRα, PPARγ, VDR and TRα1. Over-expression of huntingtin activated, whilst knockout of huntingtin decreased, LXR-mediated transcription of a reporter gene. Loss of huntingtin also decreased expression of the LXR target gene, ABCA1. In vivo, huntingtin-deficient zebrafish had a severe phenotype and reduced expression of LXR regulated genes. An LXR agonist was able to partially rescue the phenotype and the expression of LXR target genes in huntingtin-deficient zebrafish during early development. Our data suggest a novel function for wild-type huntingtin as a co-factor of LXR. However, this activity is lost by mutant huntingtin that only interacts weakly with LXR
- …
