12,007 research outputs found

    Implications of very rapid TeV variability in blazars

    Full text link
    We discuss the implications of rapid (few-minute) variability in the TeV flux of blazars, which has been observed recently with the HESS and MAGIC telescopes. The variability timescales seen in PKS 2155-304 and Mrk 501 are much shorter than inferred light-crossing times at the black hole horizon, suggesting that the variability involves enhanced emission in a small region within an outflowing jet. The enhancement could be triggered by dissipation in part of the black hole's magnetosphere at the base of the outflow, or else by instabilities in the jet itself. By considering the energetics of the observed flares, along with the requirement that TeV photons escape without producing pairs, we deduce that the bulk Lorentz factors in the jets must be >50. The distance of the emission region from the central black hole is less well-constrained. We discuss possible consequences for multi-wavelength observations.Comment: 5 pages, no figures, accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    The Bacterial Photosynthetic Reaction Center as a Model for Membrane Proteins

    Get PDF
    Membrane proteins participate in many fundamental cellular processes. Until recently, an understanding of the function and properties of membrane proteins was hampered by an absence of structural information at the atomic level. A landmark achievement toward understanding the structure of membrane proteins was the crystallization (1) and structure determination (2-5) the photosynthetic reaction center (RC) from the purple bacteria Rhodopseudomonas viridis, followed by that of the RC from Rhodobacter sphaeroides (6-17). The RC is an integral membrane protein-pigment complex, which carries out the initial steps of photosynthesis (reviewed in 18). RCs from the purple bacteria Rps. viridis and Rb. sphaeroides are composed of three membrane-associated protein subunits (designated L, M, and H), and the following cofactors: four bacteriochlorophylls (Bchl or B), two bacteriopheophytins (Bphe or [phi]), two quinones, and a nonheme iron. The cofactors are organized into two symmetrical branches that are approximately related by a twofold rotation axis (2, 8). A central feature of the structural organization of the RC is the presence of 11 hydrophobic [alpha]-helixes, approximately 20-30 residues long, which are believed to represent the membrane-spanning portion of the RC (3, 9). Five membrane-spanning helixes are present in both the L and M subunits, while a single helix is in the H subunit. The folding of the L and M subunits is similar, consistent with significant sequence similarity between the two chains (19-25). The L and M subunits are approximately related by the same twofold rotation axis that relates the two cofactor branches. RCs are the first membrane proteins to be described at atomic resolution; consequently they provide an important model for discussing the folding of membrane proteins. The structure demonstrates that [alpha]-helical structures may be adopted by integral membrane proteins, and provides confirmation of the utility of hydropathy plots in identifying nonpolar membrane-spanning regions from sequence data. An important distinction between the folding environments of water-soluble proteins and membrane proteins is the large difference in water concentration surrounding the proteins. As a result, hydrophobic interactions (26) play very different roles in stabilizing the tertiary structures of these two classes of proteins; this has important structural consequences. There is a striking difference in surface polarity of membrane and water-soluble proteins. However, the characteristic atomic packing and surface area appear quite similar. A computational method is described for defining the position of the RC in the membrane (10). After localization of the RC structure in the membrane, surface residues in contact with the lipid bilayer were identified. As has been found for soluble globular proteins, surface residues are less well conserved in homologous membrane proteins than the buried, interior residues. Methods based on the variability of residues between homologous proteins are described (13); they are useful (a) in defining surface helical regions of membrane and water-soluble proteins and (b) in assigning the side of these helixes that are exposed to the solvent. A unifying view of protein structure suggests that water-soluble proteins may be considered as modified membrane proteins with covalently attached polar groups that solubilize the proteins in aqueous solution

    An Isomorphous Replacement Method for Phasing Twinned Structures

    Get PDF
    A linear least-squares formulation of the method of isomorphous replacement is presented. With data from untwinned crystals, this approach is shown to be equivalent to the phasing representation developed by Hendrickson & Lattman [Acta Cryst. (1970). B26, 136-143]. A general method for calculating the most probable phase is described and applied to the higher- dimensional problem of phase determination for twinned structures. A method for calculating the best phase with intensity data from twinned crystals is also presented. The dependences of these phasing procedures on the number of derivatives and accuracy of the data sets are evaluated in test calculations

    Influence of surgery and rehabilitation conditioning on psychophysiological fitness

    Get PDF
    The purpose of this study was to assess changes in psychophysiological fitness following reconstructive knee surgery and early phase (2.5 months) physical rehabilitation. Nine patients (7 male, 2 female; mean age, 29.9 years) electing to undergo anterior cruciate ligament reconstructive surgery (central third, bone-patella tendon-bone graft) were assessed on four separate assessment occasions post-surgery. Repeated measures ANOVAs showed significant condition (injured/non-injured leg) by test occasion (2 weeks pre-surgery and 6, 8 and 10 weeks post-surgery) interactions for knee ligamentous compliance (anterior tibiofemoral displacement), peak force and electromechanical delay associated with the knee flexors of the injured and noninjured legs (F3,24 = 4.7 to 6.6; p < 0.01), together with individualized emotional profile disturbance scores that were significantly less at 10 weeks post-surgery compared to pre-surgery, 6 weeks and 8 weeks post-surgery (F3,24 = 7.6; p < 0.01). Spearman rank correlation coefficients identified significant relationships between musculoskeletal fitness and emotional profile scores at pre-surgery (r = 0.69–0.72; p < 0.05) and at 8 weeks post-surgery (r = 0.70–0.73; p < 0.05). The 6 Bi-POMS subscales and the 12 ERAIQ responses found inconsistent patterns of response and relationships across the assessment occasions. Overall, the patterning of changes and associations amongst emotional performance profile discrepancy scores in conjunction with those scores from indices of musculoskeletal fitness performance capability offered important support for the efficacy of an approach which integrates self-perceptive and objective measurements of fitness capability during rehabilitation following surgery to a synovial joint

    Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands

    Get PDF
    Acknowledgements This work contributes to the N-Circle project (grant number BB/N013484/1), and CINAg (BB/N013468/1) Virtual Joint Centres on Agricultural Nitrogen (funded by the Newton Fund via UK BBSRC/NERC), U-GRASS (grant number NE/M016900/1), the Belmont Forum/FACCE-JPI DEVIL project (grant number NE/M021327/1), Soils-R-GGREAT (grant number NE/P019455/1), ADVENT (grant number NE/M019713/1), Sêr Cymru LCEE-NRN project, Climate-Smart Grass and the Scottish Government’s Strategic Research Programme.Peer reviewedPublisher PD

    Some Late-time Asymptotics of General Scalar-Tensor Cosmologies

    Full text link
    We study the asymptotic behaviour of isotropic and homogeneous universes in general scalar-tensor gravity theories containing a p=-rho vacuum fluid stress and other sub-dominant matter stresses. It is shown that in order for there to be approach to a de Sitter spacetime at large 4-volumes the coupling function, omega(phi), which defines the scalar-tensor theory, must diverge faster than |phi_infty-phi|^(-1+epsilon) for all epsilon>0 as phi rightarrow phi_infty 0 for large values of the time. Thus, for a given theory, specified by omega(phi), there must exist some phi_infty in (0,infty) such that omega -> infty and omega' / omega^(2+epsilon) -> 0 as phi -> 0 phi_infty in order for cosmological solutions of the theory to approach de Sitter expansion at late times. We also classify the possible asymptotic time variations of the gravitation `constant' G(t) at late times in scalar-tensor theories. We show that (unlike in general relativity) the problem of a profusion of ``Boltzmann brains'' at late cosmological times can be avoided in scalar-tensor theories, including Brans-Dicke theory, in which phi -> infty and omega ~ o(\phi^(1/2)) at asymptotically late times.Comment: 14 page

    Hydrophobic organization of membrane proteins

    Get PDF
    Membrane-exposed residues are more hydrophobic than buried interior residues in the transmembrane regions of the photosynthetic reaction center from Rhodobacter sphaeroides. This hydrophobic organization is opposite to that of water-soluble proteins. The relative polarities of interior and surface residues of membrane and water soluble proteins are not simply reversed, however. The hydrophobicities of interior residues of both membrane and water-soluble proteins are comparable, whereas the bilayer-exposed residues of membrane proteins are more hydrophobic than the interior residues, and the aqueous-exposed residues of water-soluble proteins are more hydrophilic than the interior residues. A method of sequence analysis is described, based on the periodicity of residue replacement in homologous sequences, that extends conclusions derived from the known atomic structure of the reaction center to the more extensive database of putative transmembrane helical sequences

    Metal Cooling in Simulations of Cosmic Structure Formation

    Full text link
    The addition of metals to any gas can significantly alter its evolution by increasing the rate of radiative cooling. In star-forming environments, enhanced cooling can potentially lead to fragmentation and the formation of low-mass stars, where metal-free gas-clouds have been shown not to fragment. Adding metal cooling to numerical simulations has traditionally required a choice between speed and accuracy. We introduce a method that uses the sophisticated chemical network of the photoionization software, Cloudy, to include radiative cooling from a complete set of metals up to atomic number 30 (Zn) that can be used with large-scale three-dimensional hydrodynamic simulations. Our method is valid over an extremely large temperature range (10 K < T < 10^8 K), up to hydrogen number densities of 10^12 cm^-3. At this density, a sphere of 1 Msun has a radius of roughly 40 AU. We implement our method in the adaptive mesh refinement (AMR) hydrodynamic/N-body code, Enzo. Using cooling rates generated with this method, we study the physical conditions that led to the transition from Population III to Population II star formation. While C, O, Fe, and Si have been previously shown to make the strongest contribution to the cooling in low-metallicity gas, we find that up to 40% of the metal cooling comes from fine-structure emission by S, when solar abundance patterns are present. At metallicities, Z > 10^-4 Zsun, regions of density and temperature exist where gas is both thermally unstable and has a cooling time less than its dynamical time. We identify these doubly unstable regions as the most inducive to fragmentation. At high redshifts, the CMB inhibits efficient cooling at low temperatures and, thus, reduces the size of the doubly unstable regions, making fragmentation more difficult.Comment: 19 pages, 12 figures, significant revision, including new figure

    Implications of Variability Patterns observed in TeV Blazars on the Structure of the Inner Jet

    Get PDF
    The recent long look X-ray observations of TeV blazars have revealed many important new features concerning their time variability. In this paper, we suggest a physical interpretation for those features based on the framework of the internal and external shock scenarios. We present a simplified model applicable to TeV blazars, and investigate through simulations how each of the model parameters would affect to the observed light curve or spectrum. In particular, we show that the internal shock scenario naturally leads to all the observed variability properties including the structure function, but for it to be applicable, the fractional fluctuation of the initial bulk Lorentz factors must be small, with sigma_gamma / gamma_average < 0.01. This implies very low dynamical efficiency of the internal shock scenario. We also suggest that several observational quantities -- such as the characteristic time scale, the relative amplitude of flares as compared to the steady (``offset'') component, and the slope of the structure function -- can be used to probe the inner jet. The results are applied to the TeV blazar Mrk421, and this, within the context of the model, leads to the determination of several physical parameters: the ejection of a shell with average thickness of ~1E13 cm occurs on average every 10 minutes, and the shells collide ~1E17 cm away from the central source.Comment: 12 pages, 13 figures, to appear in Ap

    Super-Eddington Atmospheres that Don't Blow Away

    Get PDF
    We show that magnetized, radiation dominated atmospheres can support steady state patterns of density inhomogeneity that enable them to radiate at far above the Eddington limit, without suffering mass loss. The inhomogeneities consist of periodic shock fronts bounding narrow, high-density regions, interspersed with much broader regions of low density. The radiation flux avoids the regions of high density, which are therefore weighed down by gravity, while gas in the low-density regions is slammed upward into the shock fronts by radiation force. As the wave pattern moves through the atmosphere, each parcel of matter alternately experiences upward and downward forces, which balance on average. Magnetic tension shares the competing forces between regions of different densities, preventing the atmosphere from blowing apart. We calculate the density structure and phase speed of the wave pattern, and relate these to the wavelength, the density contrast, and the factor by which the net radiation flux exceeds the Eddington limit. In principle, this factor can be as large as the ratio of magnetic pressure to mean gas pressure, or the ratio of radiation pressure to gas pressure, whichever is smaller. Although the magnetic pressure must be large compared to the mean gas pressure in order to support a large density contrast, it need not be large compared to the radiation pressure. These highly inhomogeneous flows could represent the nonlinear development of the "photon bubble" instability discovered by Gammie. We briefly discuss the applicability of these solutions to astrophysical systems.Comment: 11 pages, 1 figure, accepted for publication in The Astrophysical Journa
    corecore