1,268 research outputs found
Chronic treatment with a stable obestatin analogue significantly alters plasma triglyceride levels but fails to influence food intake, fluid intake, body weight, or body composition in rats
Staphylococcus aureus virulence factors identified by using a high-throughput Caenorhabditis elegans-killing model
Staphylococcus aureus is an important human pathogen that is also able to kill the model nematode Caenorhabditis elegans. We constructed a 2,950-member Tn917 transposon insertion library in S. aureus strain NCTC 8325. Twenty-one of these insertions exhibited attenuated C. elegans killing, and of these, 12 contained insertions in different genes or chromosomal locations. Ten of these 12 insertions showed attenuated killing phenotypes when transduced into two different S. aureus strains, and 5 of the 10 mutants correspond to genes that have not been previously identified in signature-tagged mutagenesis studies. These latter five mutants were tested in a murine renal abscess model, and one mutant harboring an insertion in nagD exhibited attenuated virulence. Interestingly, Tn917 was shown to have a very strong bias for insertions near the terminus of DNA replication
Recommended from our members
A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity
Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1
The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage
Identification of lactic acid bacteria strains modulating incretin hormone secretion and gene expression in enteroendocrine cells
March1-dependent modulation of donor MHC II on CD103+ dendritic cells mitigates alloimmunity.
In transplantation, donor dendritic cells (do-DCs) initiate the alloimmune response either by direct interaction with host T cells or by transferring intact donor MHC to host DCs. However, how do-DCs can be targeted for improving allograft survival is still unclear. Here we show CD103+ DCs are the major do-DC subset involved in the acute rejection of murine skin transplants. In the absence of CD103+ do-DCs, less donor MHC-II is carried to host lymph nodes, fewer allogenic T cells are primed and allograft survival is prolonged. Incubation of skin grafts with the anti-inflammatory mycobacterial protein DnaK reduces donor MHC-II on CD103+DCs and prolongs graft survival. This effect is mediated through IL-10-induced March1, which ubiquitinates and decreases MHC-II levels. Importantly, in vitro pre-treatment of human DCs with DnaK reduces their ability to prime alloreactive T cells. Our findings demonstrate a novel therapeutic approach to dampen alloimmunity by targeting donor MHC-II on CD103+DCs
The medical student
The Medical Student was published from 1888-1921 by the students of Boston University School of Medicine
Evaluation in Mice of a Conjugate Vaccine for Cholera Made from Vibrio cholerae O1 (Ogawa) O-Specific Polysaccharide
Background: Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. Methodology Here we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide–core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli. Principal Findings We detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model. Conclusion: We describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens
Effect of drive row ground covers on hop (Rosales: Cannabaceae) yard arthropod pests in Vermont, USA
Alternatives to pesticides are necessary for the management of hop (Humulus lupulus L.) arthropod pests. The three major arthropod pests in northeastern US hop production include two-spotted spider mite, Tetranychus urticae Koch, hop aphid Phorodon humuli (Schrank), and potato leafhopper, Empoasca fabae Harris. This 3-yr study (2012-2014) in Vermont investigated the effect of flowering ground covers on arthropod pest abundance. Hop cultivars \u27Nugget\u27 and \u27Cascade\u27 were evaluated under a strip-split plot experimental design. Ground cover treatments included 1) Control: mowed red clover (Trifolium pratense) and resident weeds, 2) Clover: red clover, and 3) Diverse: common yarrow (Achillea millefolium), beebalm (Monarda fistulosa), red clover, and annual sunflower (Helianthus annuus). Natural enemies were grouped by associated pest and indicated by our mixed model to be strong predictors of the number of hop aphid and potato leafhopper on hop plants. In year two, ground cover treatment had a significant effect on two-spotted spider mite abundance where fewer two-spotted spider mite were observed on hop plants in Diverse plots. The established, un-mowed Clover treatment was preferred by potato leafhopper over Diverse ground cover and hop plants. This revealed the potential for clover ground cover to serve as a trap crop for potato leafhopper management in northeastern hop yards. Our findings are evidence that ground covers implemented for conservation biological control may serve more specific pest management functions instead of or in addition to boosting top-down pest pressure
- …
