7,058 research outputs found
A Standard Test Case Suite for Two-Dimensional Linear Transport on the Sphere: Results from a Collection of State-of-the-Art Schemes
Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a minimal set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude–longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate–chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent.
The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data sets are made available to facilitate the process of model evaluation and scheme intercomparison
Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum.
Autism is a common developmental condition with a wide, variable range of co-occurring neuropsychiatric symptoms. Contrasting with most extant studies, we explored whole-brain functional organization at multiple levels simultaneously in a large subject group reflecting autism's clinical diversity, and present the first network-based analysis of transient brain states, or dynamic connectivity, in autism. Disruption to inter-network and inter-system connectivity, rather than within individual networks, predominated. We identified coupling disruption in the anterior-posterior default mode axis, and among specific control networks specialized for task start cues and the maintenance of domain-independent task positive status, specifically between the right fronto-parietal and cingulo-opercular networks and default mode network subsystems. These appear to propagate downstream in autism, with significantly dampened subject oscillations between brain states, and dynamic connectivity configuration differences. Our account proposes specific motifs that may provide candidates for neuroimaging biomarkers within heterogeneous clinical populations in this diverse condition
Visual TASK: A Collaborative Cognitive Aid for Acute Care Resuscitation
Preventable medical errors are a severe problem in healthcare, causing over
400,000 deaths per year in the US in hospitals alone. In acute care, the branch
of medicine encompassing the emergency department (ED) and intensive care units
(ICU), error rates may be higher to due low situational awareness among
clinicians performing resuscitation on patients. To support cognition, novice
team leaders may rely on reference guides to direct and anticipate future
steps. However, guides often act as a fixation point, diverting the leader's
attention away from the team. To address this issue, we conducted a qualitative
study that evaluates a collaborative cognitive aid co-designed with clinicians
called Visual TASK. Our study explored the use of Visual TASK in three
simulations employing a projected shared display with two different interaction
modalities: the Microsoft Kinect and a touchscreen. Our results suggest that
tools like the Kinect, while useful in other areas of acute care like the OR,
are unsuitable for use in high-stress situations like resuscitation. We also
observed that fixation may not be constrained to reference guides alone, and
may extend to other objects in the room. We present our findings, and a
discussion regarding future avenues in which collaborative cognitive aids may
help in improving situational awareness in resuscitation.Comment: 8 pages, 5 figure
Deep Chronnectome Learning via Full Bidirectional Long Short-Term Memory Networks for MCI Diagnosis
Brain functional connectivity (FC) extracted from resting-state fMRI
(RS-fMRI) has become a popular approach for disease diagnosis, where
discriminating subjects with mild cognitive impairment (MCI) from normal
controls (NC) is still one of the most challenging problems. Dynamic functional
connectivity (dFC), consisting of time-varying spatiotemporal dynamics, may
characterize "chronnectome" diagnostic information for improving MCI
classification. However, most of the current dFC studies are based on detecting
discrete major brain status via spatial clustering, which ignores rich
spatiotemporal dynamics contained in such chronnectome. We propose Deep
Chronnectome Learning for exhaustively mining the comprehensive information,
especially the hidden higher-level features, i.e., the dFC time series that may
add critical diagnostic power for MCI classification. To this end, we devise a
new Fully-connected Bidirectional Long Short-Term Memory Network (Full-BiLSTM)
to effectively learn the periodic brain status changes using both past and
future information for each brief time segment and then fuse them to form the
final output. We have applied our method to a rigorously built large-scale
multi-site database (i.e., with 164 data from NCs and 330 from MCIs, which can
be further augmented by 25 folds). Our method outperforms other
state-of-the-art approaches with an accuracy of 73.6% under solid
cross-validations. We also made extensive comparisons among multiple variants
of LSTM models. The results suggest high feasibility of our method with
promising value also for other brain disorder diagnoses.Comment: The paper has been accepted by MICCAI201
Disambiguating the role of blood flow and global signal with partial information decomposition
Global signal (GS) is an ubiquitous construct in resting state functional magnetic resonance imaging (rs-fMRI), associated to nuisance, but containing by definition most of the neuronal signal. Global signal regression (GSR) effectively removes the impact of physiological noise and other artifacts, but at the same time it alters correlational patterns in unpredicted ways. Performing GSR taking into account the underlying physiology (mainly the blood arrival time) has been proven to be beneficial. From these observations we aimed to: 1) characterize the effect of GSR on network-level functional connectivity in a large dataset; 2) assess the complementary role of global signal and vessels; and 3) use the framework of partial information decomposition to further look into the joint dynamics of the global signal and vessels, and their respective influence on the dynamics of cortical areas. We observe that GSR affects intrinsic connectivity networks in the connectome in a non-uniform way. Furthermore, by estimating the predictive information of blood flow and the global signal using partial information decomposition, we observe that both signals are present in different amounts across intrinsic connectivity networks. Simulations showed that differences in blood arrival time can largely explain this phenomenon, while using hemodynamic and calcium mouse recordings we were able to confirm the presence of vascular effects, as calcium recordings lack hemodynamic information. With these results we confirm network-specific effects of GSR and the importance of taking blood flow into account for improving de-noising methods. Additionally, and beyond the mere issue of data denoising, we quantify the diverse and complementary effect of global and vessel BOLD signals on the dynamics of cortical areas
Mind over chatter: plastic up-regulation of the fMRI alertness network by EEG neurofeedback
EEG neurofeedback (NFB) is a brain-computer interface (BCI) approach used to shape brain oscillations by means of real-time feedback from the electroencephalogram (EEG), which is known to reflect neural activity across cortical networks. Although NFB is being evaluated as a novel tool for treating brain disorders, evidence is scarce on the mechanism of its impact on brain function. In this study with 34 healthy participants, we examined whether, during the performance of an attentional auditory oddball task, the functional connectivity strength of distinct fMRI networks would be plastically altered after a 30-min NFB session of alpha-band reduction (n=17) versus a sham-feedback condition (n=17). Our results reveal that compared to sham, NFB induced a specific increase of functional connectivity within the alertness/salience network (dorsal anterior and mid cingulate), which was detectable 30 minutes after termination of training. Crucially, these effects were significantly correlated with reduced mind-wandering 'on-task' and were coupled to NFB-mediated resting state reductions in the alpha-band (8-12 Hz). No such relationships were evident for the sham condition. Although group default-mode network (DMN) connectivity was not significantly altered following NFB, we observed a positive association between modulations of resting alpha amplitude and precuneal connectivity, both correlating positively with frequency of mind-wandering. Our findings demonstrate a temporally direct, plastic impact of NFB on large-scale brain functional networks, and provide promising neurobehavioral evidence supporting its use as a noninvasive tool to modulate brain function in health and disease
Block Coordinate Descent for Sparse NMF
Nonnegative matrix factorization (NMF) has become a ubiquitous tool for data
analysis. An important variant is the sparse NMF problem which arises when we
explicitly require the learnt features to be sparse. A natural measure of
sparsity is the L norm, however its optimization is NP-hard. Mixed norms,
such as L/L measure, have been shown to model sparsity robustly, based
on intuitive attributes that such measures need to satisfy. This is in contrast
to computationally cheaper alternatives such as the plain L norm. However,
present algorithms designed for optimizing the mixed norm L/L are slow
and other formulations for sparse NMF have been proposed such as those based on
L and L norms. Our proposed algorithm allows us to solve the mixed norm
sparsity constraints while not sacrificing computation time. We present
experimental evidence on real-world datasets that shows our new algorithm
performs an order of magnitude faster compared to the current state-of-the-art
solvers optimizing the mixed norm and is suitable for large-scale datasets
- …
