8,081 research outputs found

    Overview of NASA/Marshall Space Flight Center's program on knowledge of atmospheric processes

    Get PDF
    The Marshall Space Flight Center (MSFC) is charged with the responsibility to enhance aviation safety through improving understanding of various atmospheric phenomena. A brief discussion is presented concerning the tasks and work being accomplished by MSFC. The tasks are defined as follows: (1) to determine and define the turbulence and steady wind environments induced by buildings, towers, hills, trees, etc., (2) to identify, develop, and apply natural environment technology for the reconstruction and/or simulation of the natural environment for aircraft accident investigation and hazard identification, (3) to develop basic information about free atmosphere perturbations, (4) to develop and apply fog modification mathematical models to assess candidate fog modification schemes and to develop appropriate instrumentation to aquire basic data about fog. To accomplish these tasks MSFC has developed a program involving field data acquisition, wind tunnel studies, theoretical studies, data analysis, and flight simulation studies

    Wind speed and direction shears with associated vertical motion during strong surface winds

    Get PDF
    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds

    NASA/MSFC FY-83 Atmospheric Research Review

    Get PDF
    Atmospheric research conducted at the Marshall Space Flight Center in FY 1983 is discussed. Clear air turbulence, gusts, and fog dispersal near airports is discussed. The use of Doppler Lidar signals in discussed, as are low level flow conditions that are hazardous to aircraft

    Significant events in low-level flow conditions hazardous to aircraft

    Get PDF
    Atmospheric parameters recorded during high surface winds are analyzed to determine magnitude, frequency, duration, and simultaneity of occurrence of low level flow conditions known to be hazardous to the ascent and descent of conventional aircraft and the space shuttle. Graphic and tabular presentations of mean and extreme values and simultaneous occurrences of turbulence (gustiness and a gust factor), wind shear (speed and direction), and vertical motion (updrafts and downdrafts), along with associated temperature inversions are included as function of tower height, layer and/or distance for six 5 sec intervals (one interval every 100 sec) of parameters sampled simultaneously at the rate of 10 speeds, directions and temperatures per second during an approximately 10 min period

    Maxometers (peak wind speed anemometers)

    Get PDF
    An instrument for measuring peak wind speeds under severe environmental conditions is described, comprising an elongated cylinder housed in an outer casing. The cylinder contains a piston attached to a longitudinally movable guided rod having a pressure disk mounted on one projecting end. Wind pressure against the pressure disk depresses the movable rod. When the wind reaches its maximum speed, the rod is locked by a ball clutch mechanism in the position of maximum inward movement. Thereafter maximum wind speed or pressure readings may be taken from calibrated indexing means

    Two-dimensional structure in a generic model of triangular proteins and protein trimers

    Get PDF
    Motivated by the diversity and complexity of two-dimensional crystals formed by triangular proteins and protein trimers, we have investigated the structures and phase behavior of hard-disk trimers. In order to mimic specific binding interactions, each trimer possesses on `attractive' disk which can interact with similar disks on other trimers via an attractive square-well potential. At low density and low temperature, the fluid phase mainly consists of tetramers, pentamers, or hexamers. Hexamers provide the structural motif for a high-density, low-temperature periodic solid phase, but we also identify a metastable periodic structure based on a tetramer motif. At high density there is a transition between orientationally ordered and disordered solid phases. The connections between simulated structures and those of 2D protein crystals -- as seen in electron microscopy -- are briefly discussed.Comment: 7 pages, 6 figure
    corecore