3,724 research outputs found
The biogeochemistry of microbial mats, stromatolites and the ancient biosphere
Stromatolites offer an unparalleled geologic record of early life, because they constitute the oldest and most abundant recognizable remains of microbial ecosystems. Microbial mats are living homologs of stromatolites; thus, the physiology of the microbiota as well as the processes which create those features of mats (e.g., biomarker organic compounds, elemental and stable isotopic compositions) which are preserved in the ancient record. Observations of the carbon isotopic composition (delta C-13) of stromatolites and microbial mats were made and are consistent with the hypothesis that atmospheric CO2 concentrations have declined by at least one to two orders of magnitude during the past 2.5 Ga. Whereas delta C-13 values of carbonate carbon average about 0 permil during both the early and mid-Proterozoic, the delta C-13 values of stromatolitic organic matter increase from an average of -35 between 2.0 and 2.6 Ga ago to an average of about -28 about 1.0 Ga ago. Modern microbial mats in hypersaline environments have delta C-13 values typically in the range of -5 to -9, relative to an inorganic bicarbonate source at 0 permil. Both microbial mats and pur cultures of cyanobacteria grown in waters in near equilibrium with current atmospheric CO2 levels exhibit minimal discrimination against C-13. In contrast, hot spring cyanobacterial mats or cyanobacterial cultures grown under higher CO2 levels exhibit substantially greater discrimination. If care is taken to compare modern mats with stromatolites from comparable environments, it might be possible to estimate ancient levels of atmospheric CO2. In modern microbial mats, a tight coupling exists between photosynthetic organic carbon production and subsequent carbon oxidation, mostly by sulfate reduction. The rate of one process fuels a high rate of the other, with much of the sulfate reduction occurring within the same depth interval as oxygenic photosynthesis. Other aspects of this study are presented
Angular dependent planar metamagnetism in the hexagonal compounds TbPtIn and TmAgGe
Detailed magnetization measurements, M(T,H,theta), were performed on single
crystals of TbPtIn and TmAgGe (both members of the hexagonal Fe_2P/ZrNiAl
structure type), for the magnetic field H applied perpendicular to the
crystallographic c axis. These data allowed us to identify, for each compound,
the easy-axes for the magnetization, which coincided with high symmetry
directions ([120] for TbPtIn and [110] for TmAgGe). For fixed orientations of
the field along each of the two six-fold symmetry axes, a number of
magnetically ordered phases is being revealed by M(H,T) measurements below T_N.
Moreover, T ~ 2 K, M(H)|_theta measurements for both compounds (with H applied
parallel to the basal plane), as well as T = 20 K data for TbPtIn, reveal five
metamagnetic transitions with simple angular dependencies: H_{ci,j} ~
1/cos(theta +/- phi), where phi = 0^0 or 60^0. The high field magnetization
state varies with theta like 2/3*mu_{sat}(R^{3+})*cos(theta), and corresponds
to a crystal field limited saturated paramagnetic, CL-SPM, state. Analysis of
these data allowed us to model the angular dependence of the locally saturated
magnetizations M_{sat} and critical fields H_c with a three coplanar Ising-like
model, in which the magnetic moments are assumed to be parallel to three
adjacent easy axes. Furthermore, net distributions of moments were inferred
based on the measured data and the proposed model
Phase diagram of CeVSb3 under pressure and its dependence on pressure conditions
We present temperature dependent resistivity and ac-calorimetry measurements
of CeVSb3 under pressure up to 8 GPa in a Bridgman anvil cell modified to use a
liquid medium and in a diamond anvil cell using argon as a pressure medium,
respectively. We observe an initial increase of the ferromagnetic transition
temperature Tc with pressures up to 4.5 GPa, followed by decrease of Tc on
further increase of pressure and finally its disappearance, in agreement with
the Doniach model. We infer a ferromagnetic quantum critical point around 7 GPa
under hydrostatic pressure conditions from the extrapolation to 0 K of Tc and
the maximum of the A coefficient from low temperature fits of the resistivity
\rho (T)=\rho_{0}+AT^{n}. No superconductivity under pressure was observed down
to 0.35 K for this compound. In addition, differences in the Tc(P) behavior
when a slight uniaxial component is present are noticed and discussed and
correlated to choice of pressure medium
Crystal growth and annealing study of fragile, non-bulk superconductivity in YFeGe
We investigated the occurrence and nature of superconductivity in single
crystals of YFeGe grown out of Sn flux by employing x-ray diffraction,
electrical resistivity, and specific heat measurements. We found that the
residual resistivity ratio (RRR) of single crystals can be greatly improved,
reaching as high as 60, by decanting the crystals from the molten Sn at
350C and/or by annealing at temperatures between 550C and
600C. We found that samples with RRR 34 showed resistive
signatures of superconductivity with the onset of the superconducting
transition K. RRR values vary between 35 and 65 with, on
average, no systematic change in value, indicating that systematic
changes in RRR do not lead to comparable changes in . Specific heat
measurements on samples that showed clear resistive signatures of a
superconducting transition did not show any signature of a superconducting
phase transition, which suggests that the superconductivity observed in this
compound is either some sort of filamentary, strain stabilized
superconductivity associated with small amounts of stressed YFeGe
(perhaps at twin boundaries or dislocations) or is a second crystallographic
phase present at levels below detection capability of conventional powder x-ray
techniques.Comment: 8 pages, 11 figure
Anisotropy Reversal of the Upper Critical Field at Low Temperatures and Spin-Locked Superconductivity in K2Cr3As3
We report the first measurements of the anisotropic upper critical field
for KCrAs single crystals up to 60 T and K. Our results show that the upper critical field parallel to the Cr
chains, , exhibits a paramagnetically-limited behavior,
whereas the shape of the curve (perpendicular to the Cr
chains) has no evidence of paramagnetic effects. As a result, the curves
and cross at K, so that
the anisotropy parameter
increases from near to at 0.6 K. This behavior of is inconsistent with triplet
superconductivity but suggests a form of singlet superconductivity with the
electron spins locked onto the direction of Cr chains
Anisotropic transport and magnetic properties, and magnetic-field tuned states of CeZn11 single crystals
We present detailed temperature and field dependent data obtained from
magnetization, resistivity, heat capacity, Hall resistivity and thermoelectric
power measurements performed on single crystals of CeZn11. The compounds orders
antiferromagnetically at 2 K. The zero-field resistivity and TEP data
show features characteristic of a Ce-based intermetallic with crystal electric
field splitting and possible correlated, Kondo lattice effects. We constructed
the T-H phase diagram for the magnetic field applied along the easy, [110],
direction which shows that the magnetic field required to suppress T_N below
0.4 K is in the range of 45-47.5 kOe. A linear behavior of the rho(T) data,
H||[110], was observed only for H=45 kOe for 0.46 K<T<1.96 K followed by the
Landau-Fermi-liquid regime for a limited range of fields, 47.5 kOe< H<60 kOe.
From the analysis of our data, it appears that CeZn11 is a weakly to moderately
correlated local moment compound with rather small Kondo temperature. The
thermoelectric and transport properties of CeZn11 are mostly governed by the
CEF effects. Given the very high quality of our single crystals, quantum
oscillations are found for both CeZn11 and its non-magnetic analogue, LaZn11
An imaging vector magnetograph for the next solar maximum
Researchers describe the conceptual design of a new imaging vector magnetograph currently being constructed at the University of Hawaii. The instrument combines a modest solar telescope with a rotating quarter-wave plate, an acousto-optical tunable prefilter as a blocker for a servo-controlled Fabry-Perot etalon, CCD cameras, and on-line digital image processing. Its high spatial resolution (1/2 arcsec pixel size) over a large field of view (5 by 5 arcmin) will be sufficient to significantly measure, for the first time, the magnetic energy dissipated in major solar flares. Its millisecond tunability and wide spectral range (5000 to 7000 A) enable nearly simultaneous vector magnetic field measurements in the gas-pressure-dominated photosphere and magnetically-dominated chromosphere, as well as effective co-alignment with Solar-A's X ray images. Researchers expect to have the instrument in operation at Mees Solar Observatory (Haleakala) in early 1991. They have chosen to use tunable filters as wavelength-selection elements in order to emphasize the spatial relationships between magnetic field elements, and to permit construction of a compact, efficient instrument. This means that spectral information must be obtained from sequences of images, which can cause line profile distortions due to effects of atmospheric seeing
Changes In Submersed Macrophytes In Relation To Tidal Storm Surges
We analyzed long-term submersed macrophyte presence-absence data collected from 15 stations in Kings Bay/Crystal River, Florida in relation to three major storm events. The percent occurrence of most species declined immediately after storm events but the recovery pattern after the storm differed among species. Hydrilla (Hydrilla verticillata (L.F.) Royle)and Eurasian watermilfoil (Myriophyllum spicatum L.) exhibited differing recolonization behaviors. Eurasian watermilfoil recolonized quickly after storms but declined in abundance as hydrilla began to increase in abundance. Natural catastrophic events restructure submersed macrophyte communities by eliminating the dominate species, and allowing revegetation and restructuring of communities. Tidal surges may also act to maintain species diversity in the system. In addition, catastrophic events remove dense nuisance plant growth for several years, altering the public's perception of the nuisance plant problem of Kings Bay/Crystal River
- …
