3,633 research outputs found
The Isospin Asymmetry in Anomalous Fluid Dynamics
The dynamics of fluids in which the constituent particles carry nonabelian
charges can be described succinctly in terms of group-valued variables via a
generalization of the co-adjoint orbit action for particles. This formalism,
which is particularly suitable for incorporating anomalies, has previously been
used for the chiral magnetic and chiral vorticity effects. Here we consider the
similar effect for the isospin which corresponds to an angular asymmetry for
neutral pions.Comment: 12 page
Reply to "Comment on 'Precision measurement of the Casimir-Lifshitz force in a fluid'"
We have reviewed the Comment of Geyer et al. [arXiv:0708.1548] concerning our
recent work [Phys. Rev. A 75, 060102 (R) (2007)], and while we disagree with
their criticisms, we acknowledge them for giving us the opportunity to add
interesting addition material and a more detailed description of our
experiment. We describe further our calculation and explain why a more
sophisticated model is not warranted. We also present detailed experiments on
the effects of electrostatic forces in our measurements and show that the
contribution due to work function differences is small and that the residual
electrostatic force is dominated by trapped charges and external fields.
Finally, we estimate the effect of double layer interactions. These additional
calculations and measurements support our original conclusion that the
experimental results are consistent with the Lifshitz theory
Layered superconductors as negative-refractive-index metamaterials
We analyze the use of layered superconductors as anisotropic metamaterials.
Layered superconductors can have a negative refraction index in a wide
frequency range for arbitrary incident angles. Indeed, low-Tc (s-wave)
superconductors allow to produce artificial heterostructures with low losses
for T<<Tc. However, the real part of their in-plane effective permittivity is
very large. Moreover, even at low temperatures, layered high-Tc superconductors
have a large in-plane normal conductivity, producing large losses (due to
d-wave symmetry). Therefore, it is difficult to enhance the evanescent modes in
either low-Tc or high-Tc superconductors.Comment: 4 pages, 2 figure
Horava-Lifshitz gravity: tighter constraints for the Kehagias-Sfetsos solution from new solar system data
We analytically work out the perturbation induced by the Kehagias-Sfetsos
(KS) space-time solution of the Horava-Lifshitz (HL) modified gravity at long
distances on the two-body range for a pair of test particles A and B orbiting
the same mass M. We apply our results to the most recently obtained
range-residuals \delta\rho for some planets of the solar system (Mercury, Mars,
Saturn) ranged from the Earth to effectively constrain the dimensionsless KS
parameter \psi_0 for the Sun. We obtain \psi_0 >= 7.2 x 10^-10 (Mercury),
\psi_0 >= 9 x 10^-12 (Mars), \psi_0 >= 1.7 x 10^-12 (Saturn). Such lower bounds
are tighter than other ones existing in literature by several orders of
magnitude. We also preliminarily obtain \psi_0 >= 8 x 10^-10 for the system
constituted by the S2 star orbiting the Supermassive Black Hole (SBH) in the
center of the Galaxy.Comment: LaTex2e, 15 pages, 1 table, 3 figures, 31 references. Version
matching the one at press in International Journal of Modern Physics D
(IJMPD
Orientation-dependent Casimir force arising from highly anisotropic crystals: application to Bi2Sr2CaCu2O8+delta
We calculate the Casimir interaction between parallel planar crystals of Au
and the anisotropic cuprate superconductor Bi2Sr2CaCu2O8+delta (BSCCO), with
BSCCO's optical axis either parallel or perpendicular to the crystal surface,
using suitable generalizations of the Lifshitz theory. We find that the strong
anisotropy of the BSCCO permittivity gives rise to a difference in the Casimir
force between the two orientations of the optical axis, which depends on
distance and is of order 10-20% at the experimentally accessible separations 10
to 5000 nm.Comment: 5 pages, 3 figures. Accepted for publication in Physical Review
Quantum cascade photonic crystal surface emitting injection laser
A surface emitting quantum cascade injection laser is presented. Direct surface emission is obtained by using a 2D photonic-band-gap structure that simultaneously acts as a microcavity. The approach may allow miniaturization and on-chip-integration of the devices
Computation and visualization of Casimir forces in arbitrary geometries: non-monotonic lateral forces and failure of proximity-force approximations
We present a method of computing Casimir forces for arbitrary geometries,
with any desired accuracy, that can directly exploit the efficiency of standard
numerical-electromagnetism techniques. Using the simplest possible
finite-difference implementation of this approach, we obtain both agreement
with past results for cylinder-plate geometries, and also present results for
new geometries. In particular, we examine a piston-like problem involving two
dielectric and metallic squares sliding between two metallic walls, in two and
three dimensions, respectively, and demonstrate non-additive and non-monotonic
changes in the force due to these lateral walls.Comment: Accepted for publication in Physical Review Letters. (Expected
publication: Vol. 99 (8) 2007
Fabrication methods for a quantum cascade photonic crystal surface emitting laser
Conventional quantum cascade (QC) lasers are intrinsically edge-emitting devices with mode confinement achieved via a standard mesa stripe configuration. Surface emission in edge emitting QC lasers has therefore necessitated redirecting the waveguided laser emission using a second order grating. This paper describes the methods used to fabricate a 2D photonic crystal (PC) structure with or without a central defect superimposed on an electrically pumped QC laser structure with the goal of achieving direct surface emission. A successful systematic study of PC hole radius and spacing was performed using e-beam lithography. This PC method offers the promise of a number of interesting applications, including miniaturization and integration of QC lasers
Anomalous near-field heat transfer between a cylinder and a perforated surface
We predict that the radiative heat-transfer rate between a cylinder and a
perforated surface depends non-monotonically on their separation. This
anomalous behavior, which arises due to near-field effects, is explained using
a heuristic model based on the interaction of a dipole with a plate. We show
that nonmonotonicity depends not only on geometry and temperature but also on
material dispersion - for micron and submicron objects, nonmonotonicity is
present in polar dielectrics but absent in metals with small skin depths
Precision measurement of the Casimir-Lifshitz force in a fluid
The Casimir force, which results from the confinement of the quantum
mechanical zero-point fluctuations of the electromagnetic fields, has received
significant attention in recent years for its effect on micro- and nano-scale
mechanical systems. With few exceptions, experimental observations have been
limited to conductive bodies interacting separated by vacuum or air. However,
interesting phenomena including repulsive forces are expected to exist in
certain circumstances between metals and dielectrics when the intervening
medium is not vacuum. In order to better understand the effect of the Casimir
force in such situations and to test the robustness of the generalized
Casimir-Lifshitz theory, we have performed the first precision measurements of
the Casimir force between two metals immersed in a fluid. For this situation,
the measured force is attractive and is approximately 80% smaller than the
force predicted by Casimir for ideal metals in vacuum. We present experimental
results and find them to be consistent with Lifshitz's theory.Comment: 6 pages, 3 figures. (version before final publication
- …
