360 research outputs found
Intra-molecular origin of the fast relaxations observed in the Brillouin light scattering spectra of molecular glass-formers
The Brillouin light scattering spectra of the o-terphenyl single crystal are
compared with those of the liquid and the glass phases. This shows: i) the
direct evidence of a fast relaxation at 5 GHz in both the single crystal and
the glass; ii) a similar temperature dependence for the attenuation of the
longitudinal sound waves in the single crystal and the glass; and iii) the
absence of coupling between the fast relaxation and the transverse acoustic
waves. These results allow us to assign such a relaxation to the coupling
between the longitudinal acoustic waves and intra-molecular vibrations, and
therefore to exclude any relationship between it and the glass transition.Comment: 4 Pages, 4 Figure
High-performance versatile setup for simultaneous Brillouin-Raman micro-spectroscopy
This is the author accepted manuscript. The final version is available from American Physical Society via the DOI in this record.Brillouin and Raman scattering spectroscopy are established techniques for the nondestructive contactless and label-free readout of mechanical, chemical and structural properties of condensed matter. Brillouin-Raman investigations currently require separate measurements and a site-matched approach to obtain complementary information from a sample.
Here we demonstrate a new concept of fully scanning multimodal micro-spectroscopy for simultaneous detection of Brillouin and Raman light scattering in an exceptionally wide spectral range, from fractions of GHz to hundreds of THz. It yields an unprecedented 150 dB contrast, which is especially important for the analysis of opaque or turbid media such as biomedical samples, and spatial resolution on a sub-cellular scale.
We report the first applications of this new multimodal method to a range of systems, from a single cell to the fast reaction kinetics of a curing process, and the mechano-chemical mapping of highly scattering biological samples.S. Corezzi acknowledges financial support from MIUR-PRIN (Project No. 2012J8X57P). S. Caponi acknowledges support from PAT (Provincia Autonoma di Trento) (GP/PAT/2012) “Grandi Progetti 2012” Project “MaDEleNA.” P. S., A. M., M. P. acknowledge financial support from Centro Nazionale Trapianti (Project: “Studio di cellule per uso clinico umano, con particolare riferimento a modelli cellulari (liposomi) e linee cellulari in interazione con crioconservanti e con materiali biocompatibili”). L. C. and S. Caponi acknowledge financial support from Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali. F. P. acnowledges support from the UK Engineering and Physical Sciences Research Council (Grant No. EP/M028739/1 (F. P.)). The authors acknowledge Jacopo Scarponi for valuable help in setting up the hardware and software system for simultaneous Raman and BLS measurements
Brillouin-Raman mapping of natural fibers with spectral moment analysis
This is the author accepted manuscript. The final version is available from the Optical Society of America via the DOI in this record.Brillouin spectroscopy has emerged as a novel analytical tool for biophotonic research and applications. It operates on a microscopic scale and in the GHz spectral range, providing a new spatial and frequency window for the analysis of the structure and elasticity of materials. Here we investigate spectral moments calculation as a means of analysing Brillouin and Raman spectra, providing rapid access to peak intensity and frequency shift, with robust application to fast scanning measurements. This work demonstrates the potential of the method, especially in the case of micro-structured samples, typical of bio-medical applications.COST (European Cooperation in Science and Technology
The Grouping-Induced Numerosity Illusion Is Attention-Dependent
Perceptual grouping and visual attention are two mechanisms that help to segregate visual input into meaningful objects. Here we report how perceptual grouping, which affects perceived numerosity, is reduced when visual attention is engaged in a concurrent visual task. We asked participants to judge the numerosity of clouds of dot-pairs connected by thin lines, known to cause underestimation of numerosity, while simultaneously performing a color conjunction task. Diverting attention to the concomitant visual distractor significantly reduced the grouping-induced numerosity biases. Moreover, while the magnitude of the illusion under free viewing covaried strongly with AQ-defined autistic traits, under conditions of divided attention the relationship was much reduced. These results suggest that divided attention modulates the perceptual grouping of elements by connectedness and that it is independent of the perceptual style of participants
Electronic states, Mott localization, electron-lattice coupling, and dimerization for correlated one-dimensional systems. II
We discuss physical properties of strongly correlated electron states for a
linear chain obtained with the help of the recently proposed new method
combining the exact diagonalization in the Fock space with an ab initio
readjustment of the single-particle orbitals in the correlated state. The
method extends the current discussion of the correlated states since the
properties are obtained with varying lattice spacing. The finite system of N
atoms evolves with the increasing interatomic distance from a Fermi-liquid-like
state into the Mott insulator. The criteria of the localization are discussed
in detail since the results are already convergent for N>=8. During this
process the Fermi-Dirac distribution gets smeared out, the effective band mass
increases by ~50%, and the spin-spin correlation functions reduce to those for
the Heisenberg antiferromagnet. Values of the microscopic parameters such as
the hopping and the kinetic-exchange integrals, as well as the magnitude of
both intra- and inter-atomic Coulomb and exchange interactions are calculated.
We also determine the values of various local electron-lattice couplings and
show that they are comparable to the kinetic exchange contribution in the
strong-correlation limit. The magnitudes of the dimerization and the zero-point
motion are also discussed. Our results provide a canonical example of a
tractable strongly correlated system with a precise, first-principle
description as a function of interatomic distance of a model system involving
all hopping integrals, all pair-site interactions, and the exact one-band
Wannier functions.Comment: 18 pages, REVTEX, submitted to Phys. Rev.
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
Numerical study of nonlinear heat transfer from a wavy surface to a high permeability medium with pseudo-spectral and smoothed particle methods
Motivated by petro-chemical geological systems, we consider the natural convection boundary layer flow from a vertical isothermal wavy surface adjacent to a saturated non-Darcian high permeability porous medium. High permeability is considered to represent geologically sparsely packed porous media. Both Darcian drag and Forchheimer inertial drag terms are included in the velocity boundary layer equation. A high permeability medium is considered. We employ a sinusoidal relation for the wavy surface. Using a set of transformations, the momentum and heat conservation equations are converted from an (x, y) coordinate system to an (x,η) dimensionless system. The two-point boundary value problem is then solved numerically with a pseudo-spectral method based on combining the Bellman–Kalaba quasi linearization method with the Chebyschev spectral collocation technique (SQLM). The SQLM computations are demonstrated to achieve excellent correlation with smoothed particle hydrodynamic (SPH) Lagrangian solutions. We study the effect of Darcy number (Da), Forchheimer number (Fs), amplitude wavelength (A) and Prandtl number (Pr) on the velocity and temperature distributions in the regime. Local Nusselt number is also computed for selected cases. The study finds important applications in petroleum engineering and also energy systems exploiting porous media and undulating (wavy) surface geometry. The SQLM algorithm is shown to be exceptionally robust and achieves fast convergence and excellent accuracy in nonlinear heat transfer simulations
2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.
S
Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study
This paper presents new laboratory measurements
of the mass absorption efficiency (MAE) between 375 and
850 nm for 12 individual samples of mineral dust from different
source areas worldwide and in two size classes: PM10:6
(mass fraction of particles of aerodynamic diameter lower
than 10.6 \u3bcm) and PM2:5 (mass fraction of particles of aerodynamic
diameter lower than 2.5 \u3bcm). The experiments were
performed in the CESAM simulation chamber using mineral
dust generated from natural parent soils and included optical
and gravimetric analyses.
The results show that the MAE values are lower for
the PM10:6 mass fraction (range 37\u2013135x10-3 m2 g-1 at
375 nm) than for the PM2:5 (range 95\u2013711x10-3 m2 g-1 at
375 nm) and decrease with increasing wavelength as lambda-AAE,
where the \uc5ngstr\uf6m absorption exponent (AAE) averages
between 3.3 and 3.5, regardless of size. The size independence
of AAE suggests that, for a given size distribution, the oxide fraction, which could ease the application and the validation
of climate models that now start to include the representation
of the dust composition, as well as for remote
sensing of dust absorption in the UV\u2013vis spectral region
- …
