457 research outputs found
Direct Discharges of Domestic Wastewater are a Major Source of Phosphorus and Nitrogen to the Mediterranean Sea
Direct discharges of treated and untreated wastewater are important sources of nutrients to coastal marine ecosystems and contribute to their eutrophication. Here, we estimate the spatially distributed annual inputs of phosphorus (P) and nitrogen (N) associated with direct domestic wastewater discharges from coastal cities to the Mediterranean Sea (MS). According to our best estimates, in 2003 these inputs amounted to 0.9 × 10⁹ mol P yr-1 and 15 × 10⁹ mol N yr-1, that is, values on the same order of magnitude as riverine inputs of P and N to the MS. By 2050, in the absence of any mitigation, population growth plus higher per capita protein intake and increased connectivity to the sewer system are projected to increase P inputs to the MS via direct wastewater discharges by 254, 163, and 32% for South, East, and North Mediterranean countries, respectively. Complete conversion to tertiary wastewater treatment would reduce the 2050 inputs to below their 2003 levels, but at an estimated additional cost of over €2 billion yr-1. Management of coastal eutrophication may be best achieved by targeting tertiary treatment upgrades to the most affected near-shore areas, while simultaneously implementing legislation limiting P in detergents and increasing wastewater reuse across the entire basin
A very brief description of LOFAR - the Low Frequency Array
LOFAR (Low Frequency Array) is an innovative radio telescope optimized for
the frequency range 30-240 MHz. The telescope is realized as a phased aperture
array without any moving parts. Digital beam forming allows the telescope to
point to any part of the sky within a second. Transient buffering makes
retrospective imaging of explosive short-term events possible. The scientific
focus of LOFAR will initially be on four key science projects (KSPs): 1)
detection of the formation of the very first stars and galaxies in the universe
during the so-called epoch of reionization by measuring the power spectrum of
the neutral hydrogen 21-cm line (Shaver et al. 1999) on the ~5' scale; 2)
low-frequency surveys of the sky with of order expected new sources; 3)
all-sky monitoring and detection of transient radio sources such as gamma-ray
bursts, x-ray binaries, and exo-planets (Farrell et al. 2004); and 4) radio
detection of ultra-high energy cosmic rays and neutrinos (Falcke & Gorham 2003)
allowing for the first time access to particles beyond 10^21 eV (Scholten et
al. 2006). Apart from the KSPs open access for smaller projects is also
planned. Here we give a brief description of the telescope.Comment: 2 pages, IAU GA 2006, Highlights of Astronomy, Volume 14, K.A. van
der Hucht, e
Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array
When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a
radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to
detect these pulses. In this work we propose an efficient trigger
implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research
Section
Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden
Bladder cancers are a leading cause of death from malignancy. Molecular markers might predict disease progression and behaviour more accurately than the available prognostic factors. Here we use whole-genome sequencing to identify somatic mutations and chromosomal changes in 14 bladder cancers of different grades and stages. As well as detecting the known bladder cancer driver mutations, we report the identification of recurrent protein-inactivating mutations in CDKN1A and FAT1. The former are not mutually exclusive with TP53 mutations or MDM2 amplification, showing that CDKN1A dysfunction is not simply an alternative mechanism for p53 pathway inactivation. We find strong positive associations between higher tumour stage/grade and greater clonal diversity, the number of somatic mutations and the burden of copy number changes. In principle, the identification of sub-clones with greater diversity and/or mutation burden within early-stage or low-grade tumours could identify lesions with a high risk of invasive progression
First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256
Abell 2256 is one of the best known examples of a galaxy cluster hosting
large-scale diffuse radio emission that is unrelated to individual galaxies. It
contains both a giant radio halo and a relic, as well as a number of head-tail
sources and smaller diffuse steep-spectrum radio sources. The origin of radio
halos and relics is still being debated, but over the last years it has become
clear that the presence of these radio sources is closely related to galaxy
cluster merger events. Here we present the results from the first LOFAR Low
band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our
knowledge, the image presented in this paper at 63 MHz is the deepest ever
obtained at frequencies below 100 MHz in general. Both the radio halo and the
giant relic are detected in the image at 63 MHz, and the diffuse radio emission
remains visible at frequencies as low as 20 MHz. The observations confirm the
presence of a previously claimed ultra-steep spectrum source to the west of the
cluster center with a spectral index of -2.3 \pm 0.4 between 63 and 153 MHz.
The steep spectrum suggests that this source is an old part of a head-tail
radio source in the cluster. For the radio relic we find an integrated spectral
index of -0.81 \pm 0.03, after removing the flux contribution from the other
sources. This is relatively flat which could indicate that the efficiency of
particle acceleration at the shock substantially changed in the last \sim 0.1
Gyr due to an increase of the shock Mach number. In an alternative scenario,
particles are re-accelerated by some mechanism in the downstream region of the
shock, resulting in the relatively flat integrated radio spectrum. In the radio
halo region we find indications of low-frequency spectral steepening which may
suggest that relativistic particles are accelerated in a rather inhomogeneous
turbulent region.Comment: 13 pages, 13 figures, accepted for publication in A\&A on April 12,
201
Nutrient Cycling in the Mediterranean Sea: The Key to Understanding How the Unique Marine Ecosystem Functions and Responds to Anthropogenic Pressures
The Mediterranean Sea is a marine desert: although it receives large nutrient inputs from a rapidly growing coastal population, its offshore waters exhibit extremely low biological productivity. Here, we use a mass balance modelling approach to analyse the sources and fate of the two main nutrients that support marine biomass production: phosphorus (P) and nitrogen (N). Surprisingly, the main source of P and N to the Mediterranean Sea is North Atlantic surface water entering through the Strait of Gibraltar, not emissions from surrounding land. The low biological productivity of the Mediterranean Sea is linked to the switch from less bioavailable nutrients entering the basin to highly bioavailable nutrients leaving it although similar amounts of total P and N enter and leave the Mediterranean Sea. This unique feature is a direct consequence of its unusual anti-estuarine circulation. An important environmental implication of the anti-estuarine circulation is that it efficiently removes excess anthropogenic nutrients entering the Mediterranean Sea, thus protecting offshore waters against eutrophication contrary to other semi-enclosed marine basins. In a similar vein, the “self-cleaning” nature of the Mediterranean Sea may prevent severe oxygen depletion of Mediterranean deep waters should ongoing climate warming lead to a weakening of the thermohaline circulation
Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)
Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites
Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition
International audienceSilicon (Si), in the form of dissolved silicate (DSi), is a key nutrient in marine and continental ecosystems. DSi is taken up by organisms to produce structural elements (e.g., shells and phytoliths) composed of amorphous biogenic silica (bSiO(2)). A global mass balance model of the biologically active part of the modern Si cycle is derived on the basis of a systematic review of existing data regarding terrestrial and oceanic production fluxes, reservoir sizes, and residence times for DSi and bSiO(2). The model demonstrates the high sensitivity of biogeochemical Si cycling in the coastal zone to anthropogenic pressures, such as river damming and global temperature rise. As a result, further significant changes in the production and recycling of bSiO(2) in the coastal zone are to be expected over the course of this century
Synaptic vesicle dynamic changes in a model of fragile X
__Background:__ Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated.
__Methods:__ Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MSE) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy.
__Results:__ Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission.
__Conclusions:__ Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS
Sediment phosphorus speciation and mobility under dynamic redox conditions
Anthropogenic nutrient enrichment has caused phosphorus (P)
accumulation in many freshwater sediments, raising concerns that internal
loading from legacy P may delay the recovery of aquatic ecosystems suffering
from eutrophication. Benthic recycling of P strongly depends on the redox
regime within surficial sediment. In many shallow environments, redox
conditions tend to be highly dynamic as a result of, among others,
bioturbation by macrofauna, root activity, sediment resuspension and seasonal
variations in bottom-water oxygen (O2) concentrations. To gain insight
into the mobility and biogeochemistry of P under fluctuating redox
conditions, a suspension of sediment from a hypereutrophic freshwater marsh
was exposed to alternating 7-day periods of purging with air and nitrogen gas
(N2), for a total duration of 74 days, in a bioreactor system. We present
comprehensive data time series of bulk aqueous- and solid-phase chemistry,
solid-phase phosphorus speciation and hydrolytic enzyme activities
demonstrating the mass balanced redistribution of P in sediment during redox
cycling. Aqueous phosphate concentrations remained low
( ∼ 2.5 µM) under oxic conditions due to sorption to
iron(III) oxyhydroxides. During anoxic periods, once nitrate was depleted,
the reductive dissolution of iron(III) oxyhydroxides released P. However,
only 4.5 % of the released P accumulated in solution while the rest was
redistributed between the MgCl2 and NaHCO3 extractable fractions of
the solid phase. Thus, under the short redox fluctuations imposed in the
experiments, P remobilization to the aqueous phase remained relatively
limited. Orthophosphate predominated at all times during the experiment in
both the solid and aqueous phase. Combined P monoesters and diesters
accounted for between 9 and 16 % of sediment particulate P. Phosphatase
activities up to 2.4 mmol h−1 kg−1 indicated the potential for
rapid mineralization of organic P (Po), in particular during
periods of aeration when the activity of phosphomonoesterases was 37 %
higher than under N2 sparging. The results emphasize that the magnitude
and timing of internal P loading during periods of anoxia are dependent on
both P redistribution within sediments and bottom-water nitrate
concentrations
- …
