311 research outputs found
Laue Lens Development for Hard X-rays (>60 keV)
Results of reflectivity measurements of mosaic crystal samples of Cu (111)
are reported. These tests were performed in the context of a feasibility study
of a hard X-ray focusing telescope for space astronomy with energy passband
from 60 to 600 keV. The technique envisaged is that of using mosaic crystals in
transmission configuration that diffract X-rays for Bragg diffraction (Laue
lens). The Laue lens assumed has a spherical shape with focal length . It is
made of flat mosaic crystal tiles suitably positioned in the lens. The samples
were grown and worked for this project at the Institute Laue-Langevin (ILL) in
Grenoble (France), while the reflectivity tests were performed at the X-ray
facility of the Physics Department of the University of Ferrara.Comment: 6 pages, 12 figures, accepted for publication in IEEE Transactions on
Nuclear Scienc
A Cylindrical GEM Inner Tracker for the BESIII experiment at IHEP
The Beijing Electron Spectrometer III (BESIII) is a multipurpose detector
that collects data provided by the collision in the Beijing Electron Positron
Collider II (BEPCII), hosted at the Institute of High Energy Physics of
Beijing. Since the beginning of its operation, BESIII has collected the world
largest sample of J/{\psi} and {\psi}(2s). Due to the increase of the
luminosity up to its nominal value of 10^33 cm-2 s-1 and aging effect, the MDC
decreases its efficiency in the first layers up to 35% with respect to the
value in 2014. Since BESIII has to take data up to 2022 with the chance to
continue up to 2027, the Italian collaboration proposed to replace the inner
part of the MDC with three independent layers of Cylindrical triple-GEM (CGEM).
The CGEM-IT project will deploy several new features and innovation with
respect the other current GEM based detector: the {\mu}TPC and analog readout,
with time and charge measurements will allow to reach the 130 {\mu}m spatial
resolution in 1 T magnetic field requested by the BESIII collaboration. In this
proceeding, an update of the status of the project will be presented, with a
particular focus on the results with planar and cylindrical prototypes with
test beams data. These results are beyond the state of the art for GEM
technology in magnetic field
Exploring the Hard X-/soft gamma-ray Continuum Spectra with Laue Lenses
The history of X-ray astronomy has shown that any advancement in our
knowledge of the X-ray sky is strictly related to an increase in instrument
sensitivity. At energies above 60 keV, there are interesting prospects for
greatly improving the limiting sensitivity of the current generation of direct
viewing telescopes (with or without coded masks), offered by the use of Laue
lenses. We will discuss below the development status of a Hard X-Ray focusing
Telescope (HAXTEL) based on Laue lenses with a broad bandpass (from 60 to 600
keV) for the study of the X-ray continuum of celestial sources. We show two
examplesof multi-lens configurations with expected sensitivity orders of
magnitude better ( photons cm s keV
at 200 keV) than that achieved so far. With this unprecedented sensitivity,
very exciting astrophysical prospects are opened.Comment: 4 pages, 10 figures, to be published in the Proc. of the 39th ESLAB
Symosium, 19-21 April 200
Measurement of the Spin-Dependence of the pbar-p Interaction at the AD-Ring
We propose to use an internal polarized hydrogen storage cell gas target in
the AD ring to determine for the first time the two total spin-dependent pbar-p
cross sections sigma_1 and sigma_2 at antiproton beam energies in the range
from 50 to 450 MeV. The data obtained are of interest by themselves for the
general theory of pbar-p interactions since they will provide a first
experimental constraint of the spin-spin dependence of the nucleon-antinucleon
potential in the energy range of interest. In addition, measurements of the
polarization buildup of stored antiprotons are required to define the optimum
parameters of a future, dedicated Antiproton Polarizer Ring (APR), intended to
feed a double-polarized asymmetric pbar-p collider with polarized antiprotons.
Such a machine has recently been proposed by the PAX collaboration for the new
Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany.
The availability of an intense stored beam of polarized antiprotons will
provide access to a wealth of single- and double-spin observables, thereby
opening a new window on QCD spin physics.Comment: 51 pages, 23 figures, proposal submitted to the SPS committee of CER
Prospects for at CERN in NA62
The NA62 experiment will begin taking data in 2015. Its primary purpose is a
10% measurement of the branching ratio of the ultrarare kaon decay , using the decay in flight of kaons in an unseparated
beam with momentum 75 GeV/c.The detector and analysis technique are described
here.Comment: 8 pages for proceedings of 50 Years of CP
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment
The OLYMPUS collaboration reports on a precision measurement of the
positron-proton to electron-proton elastic cross section ratio, ,
a direct measure of the contribution of hard two-photon exchange to the elastic
cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams
were directed through a hydrogen gas target internal to the DORIS storage ring
at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and
time-of-flight scintillators detected elastically scattered leptons in
coincidence with recoiling protons over a scattering angle range of to . The relative luminosity between the two beam species
was monitored using tracking telescopes of interleaved GEM and MWPC detectors
at , as well as symmetric M{\o}ller/Bhabha calorimeters at
. A total integrated luminosity of 4.5~fb was collected. In
the extraction of , radiative effects were taken into account
using a Monte Carlo generator to simulate the convolutions of internal
bremsstrahlung with experiment-specific conditions such as detector acceptance
and reconstruction efficiency. The resulting values of , presented
here for a wide range of virtual photon polarization ,
are smaller than some hadronic two-photon exchange calculations predict, but
are in reasonable agreement with a subtracted dispersion model and a
phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large
spectrometer magnets of the PANDA detector set-up. It shows the conceptual
design of the magnets and their anticipated performance. It precedes the tender
and procurement of the magnets and, hence, is subject to possible modifications
arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti
Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski,
Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy),
Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
- …
