2,786 research outputs found

    3D photospheric velocity field of a Supergranular cell

    Full text link
    We investigate the plasma flow properties inside a Supergranular (SG) cell, in particular its interaction with small scale magnetic field structures. The SG cell has been identified using the magnetic network (CaII wing brightness) as proxy, applying the Two-Level Structure Tracking (TST) to high spatial, spectral and temporal resolution observations obtained by IBIS. The full 3D velocity vector field for the SG has been reconstructed at two different photospheric heights. In order to strengthen our findings, we also computed the mean radial flow of the SG by means of cork tracing. We also studied the behaviour of the horizontal and Line of Sight plasma flow cospatial with cluster of bright CaII structures of magnetic origin to better understand the interaction between photospheric convection and small scale magnetic features. The SG cell we investigated seems to be organized with an almost radial flow from its centre to the border. The large scale divergence structure is probably created by a compact region of constant up-flow close to the cell centre. On the edge of the SG, isolated regions of strong convergent flow are nearby or cospatial with extended clusters of bright CaII wing features forming the knots of the magnetic network.Comment: 7 pages, submitted to A&A, referee's comments include

    Radiative transfer effects on Doppler measurements as sources of surface effects in sunspot seismology

    Get PDF
    We show that the use of Doppler shifts of Zeeman sensitive spectral lines to observe wavesn in sunspots is subject to measurement specific phase shifts arising from, (i) altered height range of spectral line formation and the propagating character of p mode waves in penumbrae, and (ii) Zeeman broadening and splitting. We also show that these phase shifts depend on wave frequencies, strengths and line of sight inclination of magnetic field, and the polarization state used for Doppler measurements. We discuss how these phase shifts could contribute to local helioseismic measurements of 'surface effects' in sunspot seismology.Comment: 12 pages, 4 figures, Accepted for publication in the Astrophysical Journal Letter

    Immobilization of Monolayer Protected Lipophilic Gold Nanorods on a Glass Surface

    Get PDF
    We present a novel process of immobilization of gold nanorods (GNRs) on a glass surface. Wedemonstrate that by exploiting monolayer protection of the GNRs, their unusual opticalproperties can be completely preserved. UV–visible spectroscopy and atomic forcemicroscopy analysis are used to reveal the optical and morphological properties of monolayerprotected immobilized lipophilic GNRs, and molecular dynamics simulations are used toelucidate their surface molecule arrangements

    Nonlinear response of single-molecule nanomagnets: equilibrium and dynamical

    Full text link
    We present an experimental study of the {\em nonlinear} susceptibility of Mn12_{12} single-molecule magnets. We investigate both their thermal-equilibrium and dynamical nonlinear responses. The equilibrium results show the sensitivity of the nonlinear susceptibility to the magnetic anisotropy, which is nearly absent in the linear response for axes distributed at random. The nonlinear dynamic response of Mn12_{12} was recently found to be very large and displaying peaks reversed with respect to classical superparamagnets [F. Luis {\em et al.}, Phys. Rev. Lett. {\bf 92}, 107201 (2004)]. Here we corroborate the proposed explanation -- strong field dependence of the relaxation rate due to the detuning of tunnel energy levels. This is done by studying the orientational dependence of the nonlinear susceptibility, which permits to isolate the quantum detuning contribution. Besides, from the analysis of the longitudinal and transverse contributions we estimate a bound for the decoherence time due to the coupling to the phonon bath.Comment: 13 pages, 8 figures, resubmitted to Phys. Rev. B with minor change

    A Proteomic Approach to Study the Effect of Thiotaurine on Human Neutrophil Activation

    Get PDF
    Thiotaurine, a thiosulfonate related to taurine and hypotaurine, is formed by a metabolic process from cystine and generated by a transulfuration reaction between hypotaurine and thiocysteine. Thiotaurine can produce hydrogen sulfide (H2S) from its sulfane sulfur moiety. H2S is a gaseous signaling molecule which can have regulatory roles in inflammatory process. In addition, sulfane sulfur displays the capacity to reversibly bind to other sulfur atoms. Thiotaurine inhibits PMA-induced activation of human neutrophils, and hinders neutrophil spontaneous apoptosis. Here, we present the results of a proteomic approach to study the possible effects of thiotaurine at protein expression level. Proteome analysis of human neutrophils has been performed comparing protein extracts of resting or PMA-activated neutrophils in presence or in absence of thiotaurine. In particular, PMA-stimulated neutrophils showed high level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression compared to the level of the same glycolytic enzyme in the resting neutrophils. Conversely, decreased expression of GAPDH has been observed when human neutrophils were incubated with 1 mM thiotaurine before activation with PMA. This result, confirmed by Western blot analysis, suggests again that thiotaurine shows a bioactive role in the mechanisms underlying the inflammatory process, influencing the energy metabolism of activated leukocytes and raises the possibility that thiotaurine, acting as a sulfur donor, could modulate neutrophil activation via persulfidation of target proteins, such as GAPDH

    Three-minute wave enhancement in the solar photosphere

    Get PDF
    It is a well-known result that the power of five-minute oscillations is progressively reduced by magnetic fields in the solar photosphere. Many authors have pointed out that this fact could be due to a complex interaction of many processes: opacity effects, MHD mode conversion and intrinsic reduced acoustic emissivity in strong magnetic fields. While five-minute oscillations are the dominant component in the photosphere, it has been shown that chromospheric heights are in turn dominated by three-minute oscillations. Two main theories have been proposed to explain their presence based upon resonance filtering in the atmospheric cavity and non linear interactions. In this work we show, through the analysis of IBIS observations of a solar pore in the photospheric Fe I 617.3 nm line, that three-minute waves are already present at the height of formation of this line and that their amplitude depends on the magnetic field strength and is strictly confined in the umbral region.Comment: A&A accepte

    Tracking magnetic bright point motions through the solar atmosphere

    Get PDF
    High-cadence, multiwavelength observations and simulations are employed for the analysis of solar photospheric magnetic bright points (MBPs) in the quiet Sun. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere (ROSA) imager and the Interferometric Bidimensional Spectrometer at the Dunn Solar Telescope. Our analysis reveals that photospheric MBPs have an average transverse velocity of approximately 1 km s−1, whereas their chromospheric counterparts have a slightly higher average velocity of 1.4 km s−1. Additionally, chromospheric MBPs were found to be around 63 per cent larger than the equivalent photospheric MBPs. These velocity values were compared with the output of numerical simulations generated using the MURAM code. The simulated results were similar, but slightly elevated, when compared to the observed data. An average velocity of 1.3 km s−1 was found in the simulated G-band images and an average of 1.8 km s−1 seen in the velocity domain at a height of 500 km above the continuum formation layer. Delays in the change of velocities were also analysed. Average delays of ∼4 s between layers of the simulated data set were established and values of ∼29 s observed between G-band and Ca II K ROSA observations. The delays in the simulations are likely to be the result of oblique granular shock waves, whereas those found in the observations are possibly the result of a semi-rigid flux tube

    What you know can influence what you are going to know (especially for older adults)

    Get PDF
    Stimuli related to an individual's knowledge/experience are often more memorable than abstract stimuli, particularly for older adults. This has been found when material that is congruent with knowledge is contrasted with material that is incongruent with knowledge, but there is little research on a possible graded effect of congruency. The present study manipulated the degree of congruency of study material with participants’ knowledge. Young and older participants associated two famous names to nonfamous faces, where the similarity between the nonfamous faces and the real famous individuals varied. These associations were incrementally easier to remember as the name-face combinations became more congruent with prior knowledge, demonstrating a graded congruency effect, as opposed to an effect based simply on the presence or absence of associations to prior knowledge. Older adults tended to show greater susceptibility to the effect than young adults, with a significant age difference for extreme stimuli, in line with previous literature showing that schematic support in memory tasks particularly benefits older adults

    Bead-like structures and self-assembled monolayers from 2,6-dipyrazolylpyridines and their iron(II) complexes

    Get PDF
    Drop-casting acetone solutions of [Fe(bpp)2][BF4]2 (bpp = 2,6-di[pyrazol-1-yl]pyridine) onto a HOPG surface affords unusual chain-of-beads nanostructures. The beads in each chain are similar in size, with diameters in the range of 2–6 nm and heights of up to 10 Å, which is consistent with them containing between 10–50 molecules of the compound. The beads can be classified into two types, which exhibit different conduction regimes by current-imaging tunnelling spectroscopy (CITS) which appear to correlate with their positions in the chains, and may correspond to molecules containing high-spin and low-spin iron centres. Similarly drop-cast films of the complex on a gold surface contain the intact [Fe(bpp)2][BF4]2 compound by XPS. 4-Mercapto-2,6-di[pyrazol-1-yl]pyridine undergoes substantial decomposition when deposited on gold, forming elemental sulfur, but 4-(N-thiomorpholinyl)-2,6-di[pyrazol-1-yl]pyridine successfully forms SAMs on a gold surface by XPS and ellipsometry

    Searching for Planets in the Hyades II: Some Implications of Stellar Magnetic Activity

    Full text link
    The Hyades constitute a homogeneous sample of stars ideal for investigating the dependence of planet formation on the mass of the central star. Due to their youth, Hyades members are much more chromospherically active than stars traditionally surveyed for planets using high precision radial velocity (RV) techniques. Therefore, we have conducted a detailed investigation of whether magnetic activity of our Hyades target stars will interfere with our ability to make precise RV searches for substellar companions. We measure chromospheric activity (which we take as a proxy for magnetic activity) by computing the equivalent of the R'HK activity index from the Ca II K line. is not constant in the Hyades: we confirm that it decreases with increasing temperature in the F stars, and also find it decreases for stars cooler than mid-K. We examine correlations between simultaneously measured R'HK and RV using both a classical statistical test and a Bayesian odds ratio test. We find that there is a significant correlation between R'HK and the RV in only 5 of the 82 stars in this sample. Thus, simple Rprime HK-RV correlations will generally not be effective in correcting the measured RV values for the effects of magnetic activity in the Hyades. We argue that this implies long timescale activity variations (of order a few years; i.e., magnetic cycles or growth and decay of plage regions) will not significantly hinder our search for planets in the Hyades if the stars are closely monitored for chromospheric activity. The trends in the RV scatter (sigma'_v) with , vsini, and P_rot for our stars is generally consistent with those found in field stars in the Lick planet search data, with the notable exception of a shallower dependence of sigma'_v on for F stars.Comment: 15 pages, 7 figures, 3 tables; To appear in the July 2002 issue of The Astronomical Journa
    corecore