5,678 research outputs found
Dynamic Server Allocation over Time Varying Channels with Switchover Delay
We consider a dynamic server allocation problem over parallel queues with
randomly varying connectivity and server switchover delay between the queues.
At each time slot the server decides either to stay with the current queue or
switch to another queue based on the current connectivity and the queue length
information. Switchover delay occurs in many telecommunications applications
and is a new modeling component of this problem that has not been previously
addressed. We show that the simultaneous presence of randomly varying
connectivity and switchover delay changes the system stability region and the
structure of optimal policies. In the first part of the paper, we consider a
system of two parallel queues, and develop a novel approach to explicitly
characterize the stability region of the system using state-action frequencies
which are stationary solutions to a Markov Decision Process (MDP) formulation.
We then develop a frame-based dynamic control (FBDC) policy, based on the
state-action frequencies, and show that it is throughput-optimal asymptotically
in the frame length. The FBDC policy is applicable to a broad class of network
control systems and provides a new framework for developing throughput-optimal
network control policies using state-action frequencies. Furthermore, we
develop simple Myopic policies that provably achieve more than 90% of the
stability region. In the second part of the paper, we extend our results to
systems with an arbitrary but finite number of queues.Comment: 38 Pages, 18 figures. arXiv admin note: substantial text overlap with
arXiv:1008.234
Fluid Flows of Mixed Regimes in Porous Media
In porous media, there are three known regimes of fluid flows, namely,
pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are
usually treated separately in literature. To study complex flows when all three
regimes may be present in different portions of a same domain, we use a single
equation of motion to unify them. Several scenarios and models are then
considered for slightly compressible fluids. A nonlinear parabolic equation for
the pressure is derived, which is degenerate when the pressure gradient is
either small or large. We estimate the pressure and its gradient for all time
in terms of initial and boundary data. We also obtain their particular bounds
for large time which depend on the asymptotic behavior of the boundary data but
not on the initial one. Moreover, the continuous dependence of the solutions on
initial and boundary data, and the structural stability for the equation are
established.Comment: 33 page
A New Approach to Spin Glass Simulations
We present a recursive procedure to calculate the parameters of the recently
introduced multicanonical ensemble and explore the approach for spin glasses.
Temperature dependence of the energy, the entropy and other physical quantities
are easily calculable and we report results for the zero temperature limit. Our
data provide evidence that the large increase of the ergodicity time is
greatly improved. The multicanonical ensemble seems to open new horizons for
simulations of spin glasses and other systems which have to cope with
conflicting constraints
Graph Mining for Object Tracking in Videos
International audienceThis paper shows a concrete example of the use of graph mining for tracking objects in videos with moving cameras and without any contextual information on the objects to track. To make the mining algorithm efficient, we benefit from a video representation based on dy- namic (evolving through time) planar graphs. We then define a number of constraints to efficiently find our so-called spatio-temporal graph pat- terns. Those patterns are linked through an occurrences graph to allow us to tackle occlusion or graph features instability problems in the video. Experiments on synthetic and real videos show that our method is effec- tive and allows us to find relevant patterns for our tracking application
Multicanonical Study of the 3D Ising Spin Glass
We simulated the Edwards-Anderson Ising spin glass model in three dimensions
via the recently proposed multicanonical ensemble. Physical quantities such as
energy density, specific heat and entropy are evaluated at all temperatures. We
studied their finite size scaling, as well as the zero temperature limit to
explore the ground state properties.Comment: FSU-SCRI-92-121; 7 pages; sorry, no figures include
Measuring movement fluency during the sit-to-walk task
Restoring movement fluency is a key focus for physical rehabilitation; it's measurement, however, lacks objectivity. The purpose of this study was to find whether measurable movement fluency variables differed between groups of adults with different movement abilities whilst performing the sit-to-walk (STW) movement. The movement fluency variables were: (1) hesitation during movement (reduction in forward velocity of the centre of mass; CoM), (2) coordination (percentage of temporal overlap of joint rotations) and (3) smoothness (number of inflections in the CoM jerk signal)
How large is "large " for Nuclear matter?
We argue that a so far neglected dimensionless scale, the number of neighbors
in a closely packed system, is relevant for the convergence of the large
expansion at high chemical potential. It is only when the number of colors is
large w.r.t. this new scale (\sim \order{10}) that a convergent large
limit is reached. This provides an explanation as to why the large
expansion, qualitatively successful in in vacuum QCD, fails to describe high
baryo-chemical potential systems, such as nuclear matter. It also means that
phenomenological claims about high density matter based on large
extrapolations should be treated with caution.Comment: Proceedings of CPOD2010 conference, in Dubna. Results based on
Phys.Rev.C82, 055202 (2010), http://arxiv.org/abs/1006.247
Grundstate Properties of the 3D Ising Spin Glass
We study zero--temperature properties of the 3d Edwards--Anderson Ising spin
glass on finite lattices up to size . Using multicanonical sampling we
generate large numbers of groundstate configurations in thermal equilibrium.
Finite size scaling with a zero--temperature scaling exponent describes the data well. Alternatively, a descriptions in terms of Parisi
mean field behaviour is still possible. The two scenarios give significantly
different predictions on lattices of size .Comment: LATEX 9pages,figures upon request ,SCRI-9
A Search for TeV Gamma-Ray Emission from High-Peaked Flat Spectrum Radio Quasars Using the Whipple Air-Cherenkov Telescope
Blazars have traditionally been separated into two broad categories based
upon their optical emission characteristics; BL Lacs, with faint or no emission
lines, and flat spectrum radio quasars (FSRQs) with prominent, broad emission
lines. The spectral energy distribution of FSRQs has generally been thought of
as being more akin to the low-peaked BL Lacs, which exhibit a peak in the
infrared region of the spectrum, as opposed to high-peaked BL Lacs (HBLs),
which exhibit a peak in UV/X-ray region of the spectrum. All blazars currently
confirmed as sources of TeV emission are HBLs. Recent surveys have found
several FSRQs exhibiting spectral properties similar to HBLs, particularly the
synchrotron peak frequency. These objects are potential sources of TeV emission
according to several models of blazar jet emission and blazar evolution.
Measurements of TeV flux or upper limits could impact existing theories
explaining the links between different blazar types and could have a
significant impact on our understanding of the nature of objects that are
capable of TeV emission. In particular, the presence (or absence) of TeV
emission from FSRQs could confirm (or cast doubt upon) recent evolutionary
models that expect intermediate objects in a transitionary state between FSRQ
and BL Lac. The Whipple 10 meter imaging air-Cherenkov gamma-ray telescope is
well suited for TeV gamma-ray observations. Using the Whipple telescope, we
have taken data on a small selection of nearby(z<0.1 in most cases),
high-peaked FSRQs. Although one of the objects, B2 0321+33, showed marginal
evidence of flaring, no significant emission was detected. The implications of
this paucity of emission and the derived upper limits are discussed.Comment: accepted for publication in Astrophysical Journa
- …
