2,773 research outputs found
Effective-Field-Theory Approach to Top-Quark Production and Decay
We discuss new physics in top-quark interactions, using an effective field
theory approach. We consider top-quark decay, single top production, and
top-quark pair production. We identify 15 dimension-six operators that
contribute to these processes, and we compute the deviation from the Standard
Model induced by these operators. The results provide a systematic way of
searching for (or obtaining bounds on) physics beyond the Standard Model.Comment: 24 pages, 12 figures; references added, typos correcte
Scalable solid-state quantum computation in decoherence-free subspaces with trapped ions
We propose a decoherence-free subspaces (DFS) scheme to realize scalable
quantum computation with trapped ions. The spin-dependent Coulomb interaction
is exploited, and the universal set of unconventional geometric quantum gates
is achieved in encoded subspaces that are immune from decoherence by collective
dephasing. The scalability of the scheme for the ion array system is
demonstrated, either by an adiabatic way of switching on and off the
interactions, or by a fast gate scheme with comprehensive DFS encoding and
noise decoupling techniques.Comment: 4 pages, 1 figur
Studying the WHIM Content of the Galaxy Large-Scale Structures along the Line of Sight to H 2356-309
We make use of a 500ks Chandra HRC-S/LETG spectrum of the blazar H2356-309,
combined with a lower S/N spectrum of the same target, to search for the
presence of warm-hot absorbing gas associated with two Large-Scale Structures
(LSSs) crossed by this sightline at z=0.062 (the Pisces-Cetus Supercluster,
PCS) and at z=0.128 ("Farther Sculptor Wall", FSW). No statistically
significant (>=3sigma) individual absorption is detected from any of the strong
He- or H-like transitions of C, O and Ne at the redshifts of the structures.
However we are still able to constrain the physical and geometrical parameters
of the associated putative absorbing gas, by performing joint spectral fit of
marginal detections and upper limits of the strongest expected lines with our
self-consistent hybrid ionization WHIM spectral model. At the redshift of the
PCS we identify a warm phase with logT=5.35_-0.13^+0.07 K and log N_H
=19.1+/-0.2 cm^-2 possibly coexisting with a hotter and less significant phase
with logT=6.9^+0.1_-0.8 K and log N_H=20.1^+0.3_-1.7 cm^-2 (1sigma errors). For
the FSW we estimate logT=6.6_-0.2^+0.1 K and log N_H=19.8_-0.8^+0.4 cm^-2. Our
constraints allow us to estimate the cumulative number density per unit
redshifts of OVII WHIM absorbers. We also estimate the cosmological mass
density obtaining Omega_b(WHIM)=(0.021^+0.031_-0.018) (Z/Z_sun)^-1, consistent
with the mass density of the intergalactic 'missing baryons' for high
metallicities.Comment: 29 pages, 8 figures, 4 tables. Accepted for publication in Ap
Evolution of Lyman Break Galaxies Beyond Redshift Four
The formation rate of luminous galaxies seems to be roughly constant from z~2
to z~4 from the recent observations of Lyman break galaxies (LBGs) (Steidel et
al 1999). The abundance of luminous quasars, on the other hand, appears to drop
off by a factor of more than twenty from z~2 to z~5 (Warren, Hewett, & Osmer
1994; Schmidt, Schneider, & Gunn 1995). The difference in evolution between
these two classes of objects in the overlapping, observed redshift range,
z=2-4, can be explained naturally, if we assume that quasar activity is
triggered by mergers of luminous LBGs and one quasar lifetime is ~10^{7-8} yrs.
If this merger scenario holds at higher redshift, for the evolutions of these
two classes of objects to be consistent at z>4, the formation rate of luminous
LBGs is expected to drop off at least as rapidly as exp(-(z-4)^{6/5}) at z>4.Comment: in press, ApJ Letters, 15 latex pages plus 1 fi
O-V-S-Z and friends: Non-Gaussianity from inhomogeneous reionization
We calculate the cosmic microwave background (CMB) bispectrum due to
inhomogeneous reionization. We calculate all the terms that can contribute to
the bispectrum that are products of first order terms on all scales in
conformal Newtonian gauge. We also correctly account for the de-correlation
between the matter density and initial conditions using perturbation theory up
to third order. We find that the bispectrum is of local type as expected. For a
reasonable model of reionization, in which the Universe is completely ionized
by redshift z_{ri} ~ 8 with optical depth to the last scattering surface
\tau_0=0.087 the signal to noise for detection of the CMB temperature
bispectrum is S/N ~ 0.1 and confusion in the estimation of primordial
non-Gaussianity is f_{NL} ~ -0.1. For an extreme model with z_{ri} ~ 12.5,
\tau_0=0.14 we get S/N ~ 0.5 and f_{NL} ~ -0.2.Comment: Published versio
The Nature of the Warm/Hot Intergalactic Medium I. Numerical Methods, Convergence, and OVI Absorption
We perform a series of cosmological simulations using Enzo, an Eulerian
adaptive-mesh refinement, N-body + hydrodynamical code, applied to study the
warm/hot intergalactic medium. The WHIM may be an important component of the
baryons missing observationally at low redshift. We investigate the dependence
of the global star formation rate and mass fraction in various baryonic phases
on spatial resolution and methods of incorporating stellar feedback. Although
both resolution and feedback significantly affect the total mass in the WHIM,
all of our simulations find that the WHIM fraction peaks at z ~ 0.5, declining
to 35-40% at z = 0. We construct samples of synthetic OVI absorption lines from
our highest-resolution simulations, using several models of oxygen ionization
balance. Models that include both collisional ionization and photoionization
provide excellent fits to the observed number density of absorbers per unit
redshift over the full range of column densities (10^13 cm-2 <= N_OVI <= 10^15
cm^-2). Models that include only collisional ionization provide better fits for
high column density absorbers (N_OVI > 10^14 cm^-2). The distribution of OVI in
density and temperature exhibits two populations: one at T ~ 10^5.5 K
(collisionally ionized, 55% of total OVI) and one at T ~ 10^4.5 K
(photoionized, 37%) with the remainder located in dense gas near galaxies.
While not a perfect tracer of hot gas, OVI provides an important tool for a
WHIM baryon census.Comment: 22 pages, 21 figures, emulateapj, accepted for publication in Ap
Accuracy of Mesh Based Cosmological Hydrocodes: Tests and Corrections
We perform a variety of tests to determine the numerical resolution of the
cosmological TVD eulerian code developed by Ryu et al (1993). Tests include
512^3 and 256^3 simulations of a Pk=k^{-1} spectrum to check for
self-similarity and comparison of results with those from higher resolution SPH
and grid-based calculations (Frenk et al 1998). We conclude that in regions
where density gradients are not produced by shocks the code degrades resolution
with a Gaussian smoothing (radius) length of 1.7 cells. At shock caused
gradients (for which the code was designed) the smoothing length is 1.1 cells.
Finally, for \beta model fit clusters, we can approximately correct numerical
resolution by the transformation R^2_{core}\to R^2_{core}-(C\Delta l)^2, where
\Delta l is the cell size and C=1.1-1.7. When we use these corrections on our
previously published computations for the SCDM and \Lambda CDM models we find
luminosity weighted, zero redshift, X-ray cluster core radii of (210\pm 86,
280\pm 67)h^{-1}kpc, respectively, which are marginally consistent with
observed (Jones & Forman 1992) values of 50-200h^{-1}kpc. Using the corrected
core radii, the COBE normalized SCDM model predicts the number of bright
L_x>10^{43}erg/s clusters too high by a factor of \sim 20 and the \Lambda CDM
model is consistent with observations.Comment: ApJ in press (1999
Local transformation of mixed states of two qubits to Bell diagonal states
The optimal entanglement manipulation for a single copy of mixed states of
two qubits is to transform it to a Bell diagonal state. In this paper we derive
an explicit form of the local operation that can realize such a transformation.
The result obtained is universal for arbitrary entangled two-qubit states and
it discloses that the corresponding local filter is not unique for density
matrices with rank and can be exclusively determined for that with
and 4. As illustrations, a four-parameters family of mixed states are explored,
the local filter as well as the transformation probability are given
explicitly, which verify the validity of the general result.Comment: 5 pages, to be published in Phys. Rev.
- …
