6,775 research outputs found
Nonexistence of self-similar singularities for the 3D incompressible Euler equations
We prove that there exists no self-similar finite time blowing up solution to
the 3D incompressible Euler equations. By similar method we also show
nonexistence of self-similar blowing up solutions to the divergence-free
transport equation in . This result has direct applications to the
density dependent Euler equations, the Boussinesq system, and the
quasi-geostrophic equations, for which we also show nonexistence of
self-similar blowing up solutions.Comment: This version refines the previous one by relaxing the condition of
compact support for the vorticit
Existence of Multistring Solutions of the Self-Gravitating Massive Boson
We consider a semilinear elliptic system which include the model system of
the strings in the cosmology as a special case. We prove existence of
multi-string solutions and obtain precise asymptotic decay estimates near
infinity for the solutions.
As a special case of this result we solve an open problem posed in
\cite{yan}Comment: 12 page
A study of energy concentration and drain in incompressible fluids
In this paper we examine two opposite scenarios of energy behavior for
solutions of the Euler equation. We show that if is a regular solution on a
time interval and if for some , where is the dimension of the fluid, then the energy at the
time cannot concentrate on a set of Hausdorff dimension samller than . The same holds for solutions of the three-dimensional
Navier-Stokes equation in the range . Oppositely, if the energy
vanishes on a subregion of a fluid domain, it must vanish faster than
(T-t)^{1-\d}, for any \d>0. The results are applied to find new exclusions
of locally self-similar blow-up in cases not covered previously in the
literature.Comment: an update of the previous versio
Inclusive angular distribution of alpha and Li fragments produced in the Fe-C and Fe-Pb collisions at 1.88 GeV/u
The LS (laboratory system) emission angles theta for 2188 and 298 Li fragments, produced inclusively in relativistic Fe-C and Fe-Pb collisions, have been measured in reference to incident Fe-ion beam tracks nearby in nuclear emulsion. An empirical differential frequency formula, dN(cot theta) = exp (a + b cot theta)d(cot theta) is obtained with the constant b approx. = -0.026 at 1.88 GeV/u, which seems to be independent on the kinds of target nucleus as well as on the kinds of projectile fragments
The Cosmic Lens All-Sky Survey parent population - I. Sample selection and number counts
We present the selection of the Jodrell Bank Flat-spectrum (JBF) radio source
sample, which is designed to reduce the uncertainties in the Cosmic Lens
All-Sky Survey (CLASS) gravitational lensing statistics arising from the lack
of knowledge about the parent population luminosity function. From observations
at 4.86 GHz with the Very Large Array, we have selected a sample of 117
flat-spectrum radio sources with flux densities greater than 5 mJy. These
sources were selected in a similar manner to the CLASS complete sample and are
therefore representative of the parent population at low flux densities. The
vast majority (~90 per cent) of the JBF sample are found to be compact on the
arcsecond scales probed here and show little evidence of any extended radio jet
emission. Using the JBF and CLASS complete samples we find the differential
number counts slope of the parent population above and below the CLASS 30 mJy
flux density limit to be -2.07+/-0.02 and -1.96+/-0.12, respectively.Comment: 10 pages, 4 figures, accepted for publication in MNRA
A Scanning Transmission X-ray Microscopy Study of Cubic and Orthorhombic C₃A and Their Hydration Products in the Presence of Gypsum.
This paper shows the microstructural differences and phase characterization of pure phases and hydrated products of the cubic and orthorhombic (Na-doped) polymorphs of tricalcium aluminate (C₃A), which are commonly found in traditional Portland cements. Pure, anhydrous samples were characterized using scanning transmission X-ray microscopy (STXM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and demonstrated differences in the chemical and mineralogical composition as well as the morphology on a micro/nano-scale. C₃A/gypsum blends with mass ratios of 0.2 and 1.9 were hydrated using a water/C₃A ratio of 1.2, and the products obtained after three days were assessed using STXM. The hydration process and subsequent formation of calcium sulfate in the C₃A/gypsum systems were identified through the changes in the LIII edge fine structure for Calcium. The results also show greater Ca LII binding energies between hydrated samples with different gypsum contents. Conversely, the hydrated samples from the cubic and orthorhombic C₃A at the same amount of gypsum exhibited strong morphological differences but similar chemical environments
B0850+054: a new gravitational lens system from CLASS
We report the discovery of a new gravitational lens system from the CLASS
survey. Radio observations with the VLA, the WSRT and MERLIN show that the
radio source B0850+054 is comprised of two compact components with identical
spectra, a separation of 0.7 arcsec and a flux density ratio of 6:1. VLBA
observations at 5 GHz reveal structures that are consistent with the
gravitational lens hypothesis. The brighter of the two images is resolved into
a linear string of at least six sub-components whilst the weaker image is
radially stretched towards the lens galaxy. UKIRT K-band imaging detects an
18.7 mag extended object, but the resolution of the observations is not
sufficient to resolve the lensed images and the lens galaxy. Mass modelling has
not been possible with the present data and the acquisition of high-resolution
optical data is a priority for this system.Comment: 5 pages, 4 figures, accepted for publication in MNRA
Global classical solutions for partially dissipative hyperbolic system of balance laws
This work is concerned with (-component) hyperbolic system of balance laws
in arbitrary space dimensions. Under entropy dissipative assumption and the
Shizuta-Kawashima algebraic condition, a general theory on the well-posedness
of classical solutions in the framework of Chemin-Lerner's spaces with critical
regularity is established. To do this, we first explore the functional space
theory and develop an elementary fact that indicates the relation between
homogeneous and inhomogeneous Chemin-Lerner's spaces. Then this fact allows to
prove the local well-posedness for general data and global well-posedness for
small data by using the Fourier frequency-localization argument. Finally, we
apply the new existence theory to a specific fluid model-the compressible Euler
equations with damping, and obtain the corresponding results in critical
spaces.Comment: 39 page
On the well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces
In this paper, we prove the local well-posedness for the Ideal MHD equations
in the Triebel-Lizorkin spaces and obtain blow-up criterion of smooth
solutions. Specially, we fill a gap in a step of the proof of the local
well-posedness part for the incompressible Euler equation in \cite{Chae1}.Comment: 16page
- …
