6,775 research outputs found

    Nonexistence of self-similar singularities for the 3D incompressible Euler equations

    Full text link
    We prove that there exists no self-similar finite time blowing up solution to the 3D incompressible Euler equations. By similar method we also show nonexistence of self-similar blowing up solutions to the divergence-free transport equation in Rn\Bbb R^n. This result has direct applications to the density dependent Euler equations, the Boussinesq system, and the quasi-geostrophic equations, for which we also show nonexistence of self-similar blowing up solutions.Comment: This version refines the previous one by relaxing the condition of compact support for the vorticit

    Existence of Multistring Solutions of the Self-Gravitating Massive WW-Boson

    Full text link
    We consider a semilinear elliptic system which include the model system of the WW-strings in the cosmology as a special case. We prove existence of multi-string solutions and obtain precise asymptotic decay estimates near infinity for the solutions. As a special case of this result we solve an open problem posed in \cite{yan}Comment: 12 page

    A study of energy concentration and drain in incompressible fluids

    Full text link
    In this paper we examine two opposite scenarios of energy behavior for solutions of the Euler equation. We show that if uu is a regular solution on a time interval [0,T)[0,T) and if uLrLu \in L^rL^\infty for some r2N+1r\geq \frac{2}{N}+1, where NN is the dimension of the fluid, then the energy at the time TT cannot concentrate on a set of Hausdorff dimension samller than N2r1N - \frac{2}{r-1}. The same holds for solutions of the three-dimensional Navier-Stokes equation in the range 5/3<r<7/45/3<r<7/4. Oppositely, if the energy vanishes on a subregion of a fluid domain, it must vanish faster than (T-t)^{1-\d}, for any \d>0. The results are applied to find new exclusions of locally self-similar blow-up in cases not covered previously in the literature.Comment: an update of the previous versio

    Inclusive angular distribution of alpha and Li fragments produced in the Fe-C and Fe-Pb collisions at 1.88 GeV/u

    Get PDF
    The LS (laboratory system) emission angles theta for 2188 and 298 Li fragments, produced inclusively in relativistic Fe-C and Fe-Pb collisions, have been measured in reference to incident Fe-ion beam tracks nearby in nuclear emulsion. An empirical differential frequency formula, dN(cot theta) = exp (a + b cot theta)d(cot theta) is obtained with the constant b approx. = -0.026 at 1.88 GeV/u, which seems to be independent on the kinds of target nucleus as well as on the kinds of projectile fragments

    The Cosmic Lens All-Sky Survey parent population - I. Sample selection and number counts

    Get PDF
    We present the selection of the Jodrell Bank Flat-spectrum (JBF) radio source sample, which is designed to reduce the uncertainties in the Cosmic Lens All-Sky Survey (CLASS) gravitational lensing statistics arising from the lack of knowledge about the parent population luminosity function. From observations at 4.86 GHz with the Very Large Array, we have selected a sample of 117 flat-spectrum radio sources with flux densities greater than 5 mJy. These sources were selected in a similar manner to the CLASS complete sample and are therefore representative of the parent population at low flux densities. The vast majority (~90 per cent) of the JBF sample are found to be compact on the arcsecond scales probed here and show little evidence of any extended radio jet emission. Using the JBF and CLASS complete samples we find the differential number counts slope of the parent population above and below the CLASS 30 mJy flux density limit to be -2.07+/-0.02 and -1.96+/-0.12, respectively.Comment: 10 pages, 4 figures, accepted for publication in MNRA

    A Scanning Transmission X-ray Microscopy Study of Cubic and Orthorhombic C₃A and Their Hydration Products in the Presence of Gypsum.

    Get PDF
    This paper shows the microstructural differences and phase characterization of pure phases and hydrated products of the cubic and orthorhombic (Na-doped) polymorphs of tricalcium aluminate (C₃A), which are commonly found in traditional Portland cements. Pure, anhydrous samples were characterized using scanning transmission X-ray microscopy (STXM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and demonstrated differences in the chemical and mineralogical composition as well as the morphology on a micro/nano-scale. C₃A/gypsum blends with mass ratios of 0.2 and 1.9 were hydrated using a water/C₃A ratio of 1.2, and the products obtained after three days were assessed using STXM. The hydration process and subsequent formation of calcium sulfate in the C₃A/gypsum systems were identified through the changes in the LIII edge fine structure for Calcium. The results also show greater Ca LII binding energies between hydrated samples with different gypsum contents. Conversely, the hydrated samples from the cubic and orthorhombic C₃A at the same amount of gypsum exhibited strong morphological differences but similar chemical environments

    B0850+054: a new gravitational lens system from CLASS

    Get PDF
    We report the discovery of a new gravitational lens system from the CLASS survey. Radio observations with the VLA, the WSRT and MERLIN show that the radio source B0850+054 is comprised of two compact components with identical spectra, a separation of 0.7 arcsec and a flux density ratio of 6:1. VLBA observations at 5 GHz reveal structures that are consistent with the gravitational lens hypothesis. The brighter of the two images is resolved into a linear string of at least six sub-components whilst the weaker image is radially stretched towards the lens galaxy. UKIRT K-band imaging detects an 18.7 mag extended object, but the resolution of the observations is not sufficient to resolve the lensed images and the lens galaxy. Mass modelling has not been possible with the present data and the acquisition of high-resolution optical data is a priority for this system.Comment: 5 pages, 4 figures, accepted for publication in MNRA

    Global classical solutions for partially dissipative hyperbolic system of balance laws

    Full text link
    This work is concerned with (NN-component) hyperbolic system of balance laws in arbitrary space dimensions. Under entropy dissipative assumption and the Shizuta-Kawashima algebraic condition, a general theory on the well-posedness of classical solutions in the framework of Chemin-Lerner's spaces with critical regularity is established. To do this, we first explore the functional space theory and develop an elementary fact that indicates the relation between homogeneous and inhomogeneous Chemin-Lerner's spaces. Then this fact allows to prove the local well-posedness for general data and global well-posedness for small data by using the Fourier frequency-localization argument. Finally, we apply the new existence theory to a specific fluid model-the compressible Euler equations with damping, and obtain the corresponding results in critical spaces.Comment: 39 page

    On the well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces

    Full text link
    In this paper, we prove the local well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces and obtain blow-up criterion of smooth solutions. Specially, we fill a gap in a step of the proof of the local well-posedness part for the incompressible Euler equation in \cite{Chae1}.Comment: 16page
    corecore