118 research outputs found
Stacking Interactions in Denaturation of DNA Fragments
A mesoscopic model for heterogeneous DNA denaturation is developed in the
framework of the path integral formalism. The base pair stretchings are treated
as one-dimensional, time dependent paths contributing to the partition
function. The size of the paths ensemble, which measures the degree of
cooperativity of the system, is computed versus temperature consistently with
the model potential physical requirements. It is shown that the ensemble size
strongly varies with the molecule backbone stiffness providing a quantitative
relation between stacking and features of the melting transition. The latter is
an overall smooth crossover which begins from the \emph{adenine-thymine} rich
portions of the fragment. The harmonic stacking coupling shifts, along the
-axis, the occurrence of the multistep denaturation but it does not change
the character of the crossover. The methods to compute the fractions of open
base pairs versus temperature are discussed: by averaging the base pair
displacements over the path ensemble we find that such fractions signal the
multisteps of the transition in good agreement with the indications provided by
the specific heat plots.Comment: European Physical Journal E (2011) in pres
Polyamide-Scorpion Cyclam Lexitropsins Selectively Bind AT-Rich DNA Independently of the Nature of the Coordinated Metal
Cyclam was attached to 1-, 2- and 3-pyrrole lexitropsins for the first time
through a synthetically facile copper-catalyzed “click” reaction.
The corresponding copper and zinc complexes were synthesized and characterized.
The ligand and its complexes bound AT-rich DNA selectively over GC-rich DNA, and
the thermodynamic profile of the binding was evaluated by isothermal titration
calorimetry. The metal, encapsulated in a scorpion azamacrocyclic complex, did
not affect the binding, which was dominated by the organic tail
Muscle surface membranes: preparative methods affect apparent chemical properties and neurotoxin binding.
Considerable disagreement exists between results reported by various authors for lipid composition and enzyme activity in purified muscle membrane fractions presumed to be sarcolemma, although an explanation for these discrepancies has not been presented. We have prepared muscle light surface membrane fractions of comparable density (1.050--1.120) by a low-salt sucrose method and by an LiBr-KCl extraction procedure and compared them for density profile, total lipid and cholesterol content, protein composition and ATPase activity. In addition, sodium channels characteristic of excitable membranes have been quantitated in each preparation using [3H]saxitoxin binding assays, and the density of acetylcholine receptors determined in fractions from control and denervated muscle using alpha-[125I]bungarotoxin. Although both fractions contain predominantly surface membrane, the LiBr fraction consistently shows the higher specific activity of p-nitrophenylphosphatase, higher free cholesterol content, and higher density of sodium channels and acetylcholine receptors. The density distribution of sodium channels appears uniform throughout both fractions. Quantitative differences were seen between sodium dodecyl sulfate polyacrylamide gel electrophoresis patterns of membrane proteins from the two preparations although most bands are represented in both. A majority of the low-salt sucrose light membrane proteins were accessible in varying degrees to labelling with diazotized diiodosulfanylic acid in intact muscle. These results suggest that light surface membrane fractions may be mixtures of sarcolemma and T-tubular membranes. Using our preparative methods, the LiBr fraction may contain predominantly sarcolemma while low-salt sucrose light membranes may be enriched in T-tubular elements
Intrinsic Alterations in the Partial Molar Volume on the Protein Denaturation: Surficial Kirkwood−Buff Approach
Role of Water in Protein−Ligand Interactions: Volumetric Characterization of the Binding of 2‘-CMP and 3‘-CMP to Ribonuclease A
- …
