1,501 research outputs found

    Free Thermal Convection Driven by Nonlocal Effects

    Full text link
    We report and explain a convective phenomenon observed in molecular dynamics simulations that cannot be classified either as a hydrodynamics instability nor as a macroscopically forced convection. Two complementary arguments show that the velocity field by a thermalizing wall is proportional to the ratio between the heat flux and the pressure. This prediction is quantitatively corroborated by our simulations.Comment: RevTex, figures is eps, submited for publicatio

    Kondo effect in binuclear metal-organic complexes with weakly interacting spins

    Full text link
    We report a combined experimental and theoretical study of the Kondo effect in a series of binuclear metal-organic complexes of the form [(Me(hfacac)_2)_2(bpym)]^0, with Me = Nickel (II), Manganese(II), Zinc (II); hfacac = hexafluoroacetylacetonate, and bpym = bipyrimidine, adsorbed on Cu(100) surface. While Kondo-features did not appear in the scanning tunneling spectroscopy spectra of non-magnetic Zn_2, a zero bias resonance was resolved in magnetic Mn_2 and Ni_2 complexes. The case of Ni_2 is particularly interesting as the experiments indicate two adsorption geometries with very different properties. For Ni_2-complexes we have employed density functional theory to further elucidate the situation. Our simulations show that one geometry with relatively large Kondo temperatures T_K ~ 10K can be attributed to distorted Ni_2 complexes, which are chemically bound to the surface via the bipyrimidine unit. The second geometry, we assign to molecular fragmentation: we suggest that the original binuclear molecule decomposes into two pieces, including Ni(hexafluoroacetylacetonate)_2, when brought into contact with the Cu-substrate. For both geometries our calculations support a picture of the (S=1)-type Kondo effect emerging due to open 3d shells of the individual Ni^{2+} ions.Comment: 11 pages, 10 figures, Supplementary Information is attached as a separate PDF file, submitted to Phys. Rev.

    Gravitino perturbations in Schwarzschild black holes

    Full text link
    We consider the time evolution of massless gravitino perturbations in Schwarzschild black holes, and show that as in the case of fields of other values of spin, the evolution comes in three stages, after an initial outburst as a first stage, we observe the damped oscillations characteristic of the quasinormal ringing stage, followed by long time tails. Using the sixth order WKB method and Prony fitting of time domain data we determine the quasinormal frequencies. There is a good correspondence between the results obtained by the above two methods, and we obtain a considerable improvement with respect to the previously obtained third order WKB results. We also show that the response of a black hole depends crucially on the spin class of the perturbing field: the quality factor becomes a decreasing function of the spin for boson perturbations, whereas the opposite situation appears for fermion ones
    corecore