89 research outputs found
Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity
The design of synthetic gene networks requires an extensive genetic toolbox to control the activities and levels of protein components to achieve desired cellular functions. Recently, a novel class of RNA-based control modules, which act through post-transcriptional processing of transcripts by directed RNase III (Rnt1p) cleavage, were shown to provide predictable control over gene expression and unique properties for manipulating biological networks. Here, we increase the regulatory range of the Rnt1p control elements, by modifying a critical region for enzyme binding to its hairpin substrates, the binding stability box (BSB). We used a high throughput, cell-based selection strategy to screen a BSB library for sequences that exhibit low fluorescence and thus high Rnt1p processing efficiencies. Sixteen unique BSBs were identified that cover a range of protein expression levels, due to the ability of the sequences to affect the hairpin cleavage rate and to form active cleavable complexes with Rnt1p. We further demonstrated that the activity of synthetic Rnt1p hairpins can be rationally programmed by combining the synthetic BSBs with a set of sequences located within a different region of the hairpin that directly modulate cleavage rates, providing a modular assembly strategy for this class of RNA-based control elements
The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
Relationships between adverse childhood experiences and adult mental well-being: results from an English national household survey.
BACKGROUND: Individuals' childhood experiences can strongly influence their future health and well-being. Adverse childhood experiences (ACEs) such as abuse and dysfunctional home environments show strong cumulative relationships with physical and mental illness yet less is known about their effects on mental well-being in the general population. METHODS: A nationally representative household survey of English adults (n = 3,885) measuring current mental well-being (Short Edinburgh-Warwick Mental Well-being Scale SWEMWBS) and life satisfaction and retrospective exposure to nine ACEs. RESULTS: Almost half of participants (46.4 %) had suffered at least one ACE and 8.3 % had suffered four or more. Adjusted odds ratios (AORs) for low life satisfaction and low mental well-being increased with the number of ACEs. AORs for low ratings of all individual SWEMWBS components also increased with ACE count, particularly never or rarely feeling close to others. Of individual ACEs, growing up in a household affected by mental illness and suffering sexual abuse had the most relationships with markers of mental well-being. CONCLUSIONS: Childhood adversity has a strong cumulative relationship with adult mental well-being. Comprehensive mental health strategies should incorporate interventions to prevent ACEs and moderate their impacts from the very earliest stages of life
BioPlat: A software for human cancer biomarker discovery
Development of effective tools such as oligo-microarrays and next-generation sequencing methods for monitoring gene expression on a large scale has resulted in the discovery of gene signatures with prognostic/ predictive value in various malignant neoplastic diseases. However, with the exponential growth of gene expression databases, biologists are faced with the challenge of extracting useful information from these repositories. Here, we present a software package, BioPlat (Biomarkers Platform), which allows biologists to identify novel prognostic and predictive cancer biomarkers based on the data mining of gene expression signatures and gene expression profiling databases. BioPlat has been designed as an easy-to-use and flexible desktop software application, which provides a set of analytical tools related to data extraction, preprocessing, filtering, gene expression signature calculation, in silico validation, feature selection and annotation that leverage the integration and reuse of gene expression signatures in the context of follow-up data.Centro de Investigación y Desarrollo en Ciencias Aplicada
Short RNA Guides Cleavage by Eukaryotic RNase III
In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response
The group II intron ribonucleoprotein precursor is a large, loosely packed structure
Group II self-splicing introns are phylogenetically diverse retroelements that are widely held to be the ancestors of spliceosomal introns and retrotransposons that insert into DNA. Folding of group II intron RNA is often guided by an intron-encoded protein to form a catalytically active ribonucleoprotein (RNP) complex that plays a key role in the activity of the intron. To date, possible structural differences between the intron RNP in its precursor and spliced forms remain unexplored. In this work, we have trapped the native Lactococcus lactis group II intron RNP complex in its precursor form, by deleting the adenosine nucleophile that initiates splicing. Sedimentation velocity, size-exclusion chromatography and cryo-electron microscopy provide the first glimpse of the intron RNP precursor as a large, loosely packed structure. The dimensions contrast with those of compact spliced introns, implying that the RNP undergoes a dramatic conformational change to achieve the catalytically active state
Deprived or not deprived? Comparing the measured extent of material deprivation using the UK government's and the Poverty and Social Exclusion surveys' method of calculating material deprivation
Poverty can either be measured directly, through standards of living such as material deprivation, or indirectly through resources available, usually income. Research shows that the optimum measure of poverty combines these methods, a fact that the UK government took cognisance of in its tripartite measure of child poverty. For use in a birth cohort study, two methods of calculating material deprivation were tested: the method used by the UK government taken from the Family Resources Survey (FRS), and the methods used in the Poverty and Social Exclusion (PSE) study at Bristol University. Results show that the former measure, compared to the latter measure, underestimates the depth and extent of material deprivation among families with young children in Scotland
The CCR4-NOT Complex Physically and Functionally Interacts with TRAMP and the Nuclear Exosome
BACKGROUND: Ccr4-Not is a highly conserved multi-protein complex consisting in yeast of 9 subunits, including Not5 and the major yeast deadenylase Ccr4. It has been connected functionally in the nucleus to transcription by RNA polymerase II and in the cytoplasm to mRNA degradation. However, there has been no evidence so far that this complex is important for RNA degradation in the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: In this work we point to a new role for the Ccr4-Not complex in nuclear RNA metabolism. We determine the importance of the Ccr4-Not complex for the levels of non-coding nuclear RNAs, such as mis-processed and polyadenylated snoRNAs, whose turnover depends upon the nuclear exosome and TRAMP. Consistently, mutation of both the Ccr4-Not complex and the nuclear exosome results in synthetic slow growth phenotypes. We demonstrate physical interactions between the Ccr4-Not complex and the exosome. First, Not5 co-purifies with the exosome. Second, several exosome subunits co-purify with the Ccr4-Not complex. Third, the Ccr4-Not complex is important for the integrity of large exosome-containing complexes. Finally, we reveal a connection between the Ccr4-Not complex and TRAMP through the association of the Mtr4 helicase with the Ccr4-Not complex and the importance of specific subunits of Ccr4-Not for the association of Mtr4 with the nuclear exosome subunit Rrp6. CONCLUSIONS/SIGNIFICANCE: We propose a model in which the Ccr4-Not complex may provide a platform contributing to dynamic interactions between the nuclear exosome and its co-factor TRAMP. Our findings connect for the first time the different players involved in nuclear and cytoplasmic RNA degradation
Cryptic Transcription Mediates Repression of Subtelomeric Metal Homeostasis Genes
Nonsense-mediated mRNA decay (NMD) prevents the accumulation of transcripts bearing premature termination codons. Here we show that Saccharomyces cerevisiae NMD mutants accumulate 5′–extended RNAs (CD-CUTs) of many subtelomeric genes. Using the subtelomeric ZRT1 and FIT3 genes activated in response to zinc and iron deficiency, respectively, we show that transcription of these CD-CUTs mediates repression at the bona fide promoters, by preventing premature binding of RNA polymerase II in conditions of metal repletion. Expression of the main ZRT1 CD-CUT is controlled by the histone deacetylase Rpd3p, showing that histone deacetylases can regulate expression of genes through modulation of the level of CD-CUTs. Analysis of binding of the transcriptional activator Zap1p and insertion of transcriptional terminators upstream from the Zap1p binding sites show that CD-CUT transcription or accumulation also interferes with binding of the transcriptional activator Zap1p. Consistent with this model, overexpressing Zap1p or using a constitutively active version of the Aft1p transcriptional activator rescues the induction defect of ZRT1 and FIT3 in NMD mutants. These results show that cryptic upstream sense transcription resulting in unstable transcripts degraded by NMD controls repression of a large number of genes located in subtelomeric regions, and in particular of many metal homeostasis genes
Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules
- …
