510 research outputs found
Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem
The impulsive phase of a solar flare marks the epoch of rapid conversion of
energy stored in the pre-flare coronal magnetic field. Hard X-ray observations
imply that a substantial fraction of flare energy released during the impulsive
phase is converted to the kinetic energy of mildly relativistic electrons
(10-100 keV). The liberation of the magnetic free energy can occur as the
coronal magnetic field reconfigures and relaxes following reconnection. We
investigate a scenario in which products of the reconfiguration - large-scale
Alfven wave pulses - transport the energy and magnetic-field changes rapidly
through the corona to the lower atmosphere. This offers two possibilities for
electron acceleration. Firstly, in a coronal plasma with beta < m_e/m_p, the
waves propagate as inertial Alfven waves. In the presence of strong spatial
gradients, these generate field-aligned electric fields that can accelerate
electrons to energies on the order of 10 keV and above, including by repeated
interactions between electrons and wavefronts. Secondly, when they reflect and
mode-convert in the chromosphere, a cascade to high wavenumbers may develop.
This will also accelerate electrons by turbulence, in a medium with a locally
high electron number density. This concept, which bridges MHD-based and
particle-based views of a flare, provides an interpretation of the
recently-observed rapid variations of the line-of-sight component of the
photospheric magnetic field across the flare impulsive phase, and offers
solutions to some perplexing flare problems, such as the flare "number problem"
of finding and resupplying sufficient electrons to explain the impulsive-phase
hard X-ray emission.Comment: 31 pages, 6 figure
Crusoe, Crocodiles, and Cookery Books: David Copperfield and the Affective Power of Reading Fiction
Dependence of CMI Growth Rates on Electron Velocity Distributions and Perturbation by Solitary Waves
We calculate growth rates and corresponding gains for RX and LO mode
radiation associated with the cyclotron maser instability for parameterized
horseshoe electron velocity distributions. The velocity distribution function
was modeled to closely fit the electron distribution functions observed in the
auroral cavity. We systematically varied the model parameters as well as the
propagation direction to study the dependence of growth rates on model
parameters. The growth rate depends strongly on loss cone opening angle, which
must be less than for significant CMI growth. The growth rate is
sharply peaked for perpendicular radiation (), with a
full-width at half-maximum , in good agreement with observed k-vector
orientations and numerical simulations. The fractional bandwidth varied between
10 and 10, depending most strongly on propagation direction. This
range encompasses nearly all observed fractional AKR burst bandwidths. We find
excellent agreement between the computed RX mode emergent intensities and
observed AKR intensities assuming convective growth length 20-40 km
and group speed 0.15. The only computed LO mode growth rates compatible
observed LO mode radiation levels occurred for number densities more than 100
times the average energetic electron densities measured in auroral cavities.
This implies that LO mode radiation is not produced directly by the CMI
mechanism but more likely results from mode conversion of RX mode radiation. We
find that perturbation of the model velocity distribution by large ion solitary
waves (ion holes) can enhance the growth rate by a factor of 2-4. This will
result in a gain enhancement more than 40 dB depending on the convective growth
length within the structure. Similar enhancements may be caused by EMIC waves.Comment: 21 pages, 11 figures. J. Geophys. Res. 2007 (accepted
Age-appropriate services for people diagnosed with young onset dementia (YOD): a systematic review.
BACKGROUND: Literature agrees that post-diagnostic services for people living with young onset dementia (YOD) need to be age-appropriate, but there is insufficient evidence of 'what works' to inform service design and delivery.
OBJECTIVE: To provide an evidence base of age-appropriate services and to review the perceived effectiveness of current interventions.
METHODS: We undertook a systematic review including all types of research relating to interventions for YOD. We searched PubMed, CINHAL Plus, SCOPUS, EBSCO Host EJS, Social Care Online and Google Scholar, hand-searched journals and carried out lateral searches (July-October 2016). Included papers were synthesised qualitatively. Primary studies were critically appraised. RESULTS: Twenty articles (peer-reviewed [n = 10], descriptive accounts [n = 10]) discussing 195 participants (persons diagnosed with YOD [n = 94], caregivers [n = 91] and other [n = 10]) were identified for inclusion. Services enabled people with YOD to remain living at home for longer. However, service continuity was compromised by short-term project-based commissioning and ad-hoc service delivery.
CONCLUSION: The evidence on the experience of living with YOD is not matched by research and the innovation needed to mitigate the impact of YOD. The inclusion of people with YOD and their caregivers in service design is critical when planning support in order to delay institutional care
Recommended from our members
The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients.
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products
The FIELDS Instrument Suite for Solar Probe Plus
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products
Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM
This study addresses the sintering mechanism of Pt nanoparticles dispersed on a planar, amorphous Al2O3 support as a model system for a catalyst for automotive exhaust abatement. By means of in situ transmission electron microscopy (TEM), the model catalyst was monitored during the exposure to 10 mbar air at 650 degrees C. Time-resolved image series unequivocally reveal that the sintering of Pt nanoparticles was mediated by an Ostwald ripening process. A statistical analysis of an ensemble of Pt nanoparticles shows that the particle size distributions change shape from an initial Gaussian distribution via a log-normal distribution to a Lifshitz-Slyozov-Wagner (LSW) distribution. Furthermore, the time-dependency of the ensemble-averaged particle size and particle density is determined. A mean field kinetic description captures the main trends in the observed behavior. However, at the individual nanoparticle level, deviations from the model are observed suggesting in part that the local environment influences the atom exchange process
Recommended from our members
Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements
Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multi-spacecraft observations from Cluster we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitatively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations and use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500~V and that the majority of the potential drop was below C3. By assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous observations single- and multi-spacecraft observations
Probiotic treatment reduces appetite and glucose level in the zebrafish model.
The gut microbiota regulates metabolic pathways that modulate the physiological state of hunger or satiety. Nutrients in the gut stimulate the release of several appetite modulators acting at central and peripheral levels to mediate appetite and glucose metabolism. After an eight-day exposure of zebrafish larvae to probiotic Lactobacillus rhamnosus, high-throughput sequence analysis evidenced the ability of the probiotic to modulate the microbial composition of the gastrointestinal tract. These changes were associated with a down-regulation and up-regulation of larval orexigenic and anorexigenic genes, respectively, an up-regulation of genes related to glucose level reduction and concomitantly reduced appetite and body glucose level. BODIPY-FL-pentanoic-acid staining revealed higher short chain fatty acids levels in the intestine of treated larvae. These results underline the capability of the probiotic to modulate the gut microbiota community and provides insight into how the probiotic interacts to regulate a novel gene network involved in glucose metabolism and appetite control, suggesting a possible role for L. rhamnosus in the treatment of impaired glucose tolerance and food intake disorders by gut microbiota manipulation
The Earth: Plasma Sources, Losses, and Transport Processes
This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed
- …
