2,038 research outputs found
Comments on the Martingale Convergence Theorem Technical Report No. 21
Proofs of generality of martingale convergence theore
Magnetoelastic effects in Jahn-Teller distorted CrF and CuF studied by neutron powder diffraction
We have studied the temperature dependence of crystal and magnetic structures
of the Jahn-Teller distorted transition metal difluorides CrF and CuF
by neutron powder diffraction in the temperature range 2-280 K. The lattice
parameters and the unit cell volume show magnetoelastic effects below the
N\'eel temperature. The lattice strain due to the magnetostriction effect
couples with the square of the order parameter of the antiferromagnetic phase
transition. We also investigated the temperature dependence of the Jahn-Teller
distortion which does not show any significant effect at the antiferromagnetic
phase transition but increases linearly with increasing temperature for CrF
and remains almost independent of temperature in CuF. The magnitude of
magnetovolume effect seems to increase with the low temperature saturated
magnetic moment of the transition metal ions but the correlation is not at all
perfect
Anomalous temperature-induced volume contraction in GeTe
The recent surge of interest in phase change materials GeTe,
GeSbTe, and related compounds motivated us to revisit the
structural phase transition in GeTe in more details than was done before.
Rhombohedral-to-cubic ferroelectric phase transition in GeTe has been studied
by high resolution neutron powder diffraction on a spallation neutron source.
We determined the temperature dependence of the structural parameters in a wide
temperature range extending from 309 to 973 K. Results of our studies clearly
show an anomalous volume contraction of 0.6\% at the phase transition from the
rhombohedral to cubic phase. In order to better understand the phase transition
and the associated anomalous volume decrease in GeTe we have performed phonon
calculations based on the density functional theory. Results of the present
investigations are also discussed with respect to the experimental data
obtained for single crystals of GeTe
Combining Molecular Dynamics with Lattice-Boltzmann: A Hybrid Method for the Simulation of (Charged) Colloidal Systems
We present a hybrid method for the simulation of colloidal systems, that
combines molecular dynamics (MD) with the Lattice-Boltzmann (LB) scheme. The LB
method is used as a model for the solvent in order to take into account the
hydrodynamic mass and momentum transport through the solvent. The colloidal
particles are propagated via MD and they are coupled to the LB fluid by viscous
forces. With respect to the LB fluid, the colloids are represented by uniformly
distributed points on a sphere. Each such point (with a velocity V(r) at any
off-lattice position r is interacting with the neighboring eight LB nodes by a
frictional force F=\xi_0(V(r)-u(r)) with \xi_0 being a friction force and u(r)
being the velocity of the fluid at the position r. Thermal fluctuations are
introduced in the framework of fluctuating hydrodynamics. This coupling scheme
has been proposed recently for polymer systems by Ahlrichs and D"unweg [J.
Chem. Phys. 111, 8225 (1999)]. We investigate several properties of a single
colloidal particle in a LB fluid, namely the effective Stokes friction and long
time tails in the autocorrelation functions for the translational and
rotational velocity. Moreover, a charged colloidal system is considered
consisting of a macroion, counterions and coions that are coupled to a LB
fluid. We study the behavior of the ions in a constant electric field. In
particular, an estimate of the effective charge of the macroion is yielded from
the number of counterions that move with the macroion in the direction of the
electric field.Comment: 37 pages, 12 figure
Stability of Ca-montmorillonite hydrates: A computer simulation study
Classic simulations are used to study interlayer structure, swelling curves,
and stability of Ca-montmorillonite hydrates. For this purpose, NPzzT$ and
MuPzzT ensembles are sampled for ground level and given burial conditions. For
ground level conditions, a double layer hydrate having 15.0 A of basal spacing
is the predominant state for relative vapor pressures (p/po) ranging in
0.6-1.0. A triple hydrate counting on 17.9 A of interlaminar distance was also
found stable for p/po=1.0. For low vapor pressures, the system may produce a
less hydrated but still double layer state with 13.5 A or even a single layer
hydrate with 12.2 A of interlaminar distance. This depends on the established
initial conditions. On the other hand, the effect of burial conditions is two
sided. It was found that it enhances dehydration for all vapor pressures except
for saturation, where swelling is promoted.Comment: 8 pages, 9 figure
Antiferromagnetic Order in MnO Spherical Nanoparticles
We have performed unpolarized and polarized neutron diffraction experiments
on monodisperse 8 nm and 13 nm antiferromagnetic MnO nanoparticles. For the 8
nm sample, the antiferromagnetic transition temperature (114 K) is
suppressed compared to the bulk material (119 K) while for the 13 nm sample
(120 K) is comparable to the bulk. The neutron diffraction data of the
nanoparticles is well described using the bulk MnO magnetic structure but with
a substantially reduced average magnetic moment of 4.20.3 /Mn for
the 8 nm sample and 3.90.2 /Mn for the 13 nm sample. An analysis of
the polarized neutron data on both samples shows that in an individual MnO
nanoparticle about 80 of Mn ions order. These results can be explained by a
structure in which the monodisperse nanoparticles studied here have a core that
behaves similar to the bulk with a surface layer which does not contribute
significantly to the magnetic order.Comment: 7 pages, 5 figure
- …
