6,012 research outputs found
Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga,Mn)As
Current-induced domain-wall motion with velocity spanning over five orders of
magnitude up to 22 m/s has been observed by magneto-optical Kerr effect in
(Ga,Mn)As with perpendicular magnetic anisotropy. The data are employed to
verify theories of spin-transfer by the Slonczewski-like mechanism as well as
by the torque resulting from spin-flip transitions in the domain-wall region.
Evidence for domain-wall creep at low currents is found.Comment: 5 pages, 3 figure
Systematic description of 6Li(n, n')6Li* d + reactions with the microscopic coupled-channels method
We investigate Li(, )Li + reactions by
using the continuum-discretized coupled-channels method with the complex
Jeukenne-Lejeune-Mahaux effective nucleon-nucleon interaction. In this study,
the Li nucleus is described as a + cluster model. The
calculated elastic cross sections for incident energies between 7.47 and 24.0
MeV are good agreement with experimental data. Furthermore, we show the neutron
spectra to Li breakup states measured at selected angular points and
incident energies can be also reproduced systematically.Comment: 6 pages, 5 figures, submitted to Physical Review
Predicting the optical observables for nucleon scattering on even-even actinides
Previously derived Lane consistent dispersive coupled-channel optical model
for nucleon scattering on Th and U nuclei is extended to
describe scattering on even-even actinides with 90--98. A
soft-rotator-model (SRM) description of the low-lying nuclear structure is
used, where SRM Hamiltonian parameters are adjusted to the observed collective
levels of the target nucleus. SRM nuclear wave functions (mixed in quantum
number) have been used to calculate coupling matrix elements of the generalized
optical model. The "effective" deformations that define inter-band couplings
are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is
enforced by introducing a dynamic monopolar term to the deformed potential
leading to additional couplings between rotational bands. Fitted static
deformation parameters are in very good agreement with those derived by Wang
and collaborators using the Weizs\"acker-Skyrme global mass model (WS4),
allowing to use the latter to predict cross section for nuclei without
experimental data. A good description of scarce "optical" experimental database
is achieved. SRM couplings and volume conservation allow a precise calculation
of the compound-nucleus formation cross sections, which is significantly
different from the one calculated with rigid-rotor potentials coupling the
ground-state rotational band. Derived parameters can be used to describe both
neutron and proton induced reactions.Comment: 6 pages, 4 figures, 5 table
Gauss-Bonnet brane gravity with a confining potential
A brane scenario is envisaged in which the -dimensional bulk is endowed
with a Gauss-Bonnet term and localization of matter on the brane is achieved by
means of a confining potential. The resulting Friedmann equations on the brane
are modified by various extra terms that may be interpreted as the X-matter,
providing a possible phenomenological explanation for the accelerated expansion
of the universe. The age of the universe in this scenario is studied and shown
to be consistent with the present observational data.Comment: 14 pages, 4 figures, to appear in PR
Quasi-reversible Magnetoresistance in Exchange Spring Tunnel Junctions
We report a large, quasi-reversible tunnel magnetoresistance in
exchange-biased ferromagnetic semiconductor tunnel junctions wherein a soft
ferromagnetic semiconductor (\gma) is exchange coupled to a hard ferromagnetic
metal (MnAs). Our observations are consistent with the formation of a region of
inhomogeneous magnetization (an "exchange spring") within the biased \gma
layer. The distinctive tunneling anisotropic magnetoresistance of \gma produces
a pronounced sensitivity of the magnetoresistance to the state of the exchange
spring
Anomalous Hall effect in field-effect structures of (Ga,Mn)As
The anomalous Hall effect in metal-insulator-semiconductor structures having
thin (Ga,Mn)As layers as a channel has been studied in a wide range of Mn and
hole densities changed by the gate electric field. Strong and unanticipated
temperature dependence, including a change of sign, of the anomalous Hall
conductance has been found in samples with the highest Curie
temperatures. For more disordered channels, the scaling relation between
and , similar to the one observed previously for
thicker samples, is recovered.Comment: 5 pages, 5 figure
Slice Energy in Higher Order Gravity Theories and Conformal Transformations
We study the generic transport of slice energy between the scalar field
generated by the conformal transformation of higher-order gravity theories and
the matter component. We give precise relations for this exchange in the cases
of dust and perfect fluids. We show that, unless we are in a stationary
spacetime where slice energy is always conserved, in non-stationary situations
contributions to the total slice energy depend on whether or not test matter
follows geodesics in both frame representations of the dynamics, that is on
whether or not the two conformally related frames are physically
indistinguishable.Comment: 18 pages, references added, remark added in last Section related to
the choice of physical frame, various other improvements, final version to
appear in Gravitation and Cosmolog
Domain-wall resistance in ferromagnetic (Ga,Mn)As
A series of microstructures designed to pin domain-walls (DWs) in (Ga,Mn)As
with perpendicular magnetic anisotropy has been employed to determine extrinsic
and intrinsic contributions to DW resistance. The former is explained
quantitatively as resulting from a polarity change in the Hall electric field
at DW. The latter is one order of magnitude greater than a term brought about
by anisotropic magnetoresistance and is shown to be consistent with
disorder-induced misstracing of the carrier spins subject to spatially varying
magnetization
Kinematics of Tidal Debris from Omega Centauri's Progenitor Galaxy
We present the kinematic properties of a tidally disrupted dwarf galaxy in
the Milky Way, based on the hypothesis that its central part once contained the
most massive Galactic globular cluster, omega Cen. Dynamical evolution of a
self-gravitating progenitor galaxy that follows the present-day and likely past
orbits of omega Cen is calculated numerically and the kinematic nature of their
tidal debris is analyzed, combined with randomly generated stars comprising
spheroidal halo and flat disk components. We show that the retrograde rotation
of the debris stars at km/s accords with a recently discovered,
large radial velocity stream at km/s towards the Galactic longitude
of . These stars also contribute, only in part, to a reported
retrograde motion of the outer halo at the North Galactic Pole. The prospects
for future debris searches and the implications for the early evolution of the
Galaxy are briefly presented.Comment: 14 pages, 3 figures, accepted for publication in ApJ Letter
- …
