86 research outputs found

    Evaluating the relationship between ciprofloxacin prescription and non-susceptibility in Salmonella Typhi in Blantyre, Malawi: an observational study

    Get PDF
    Background Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi. Methods We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month. Findings From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8–7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4–10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre. Interpretation We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance. Funding Wellcome Trust, Bill & Melinda Gates Foundation, and National Institute for Health and Care Research (UK)

    Intrapulmonary Pharmacokinetics of First-line Anti-tuberculosis Drugs in Malawian Patients With Tuberculosis

    Get PDF
    BACKGROUND: Further work is required to understand the intrapulmonary pharmacokinetics of first-line anti-tuberculosis drugs. This study aimed to describe the plasma and intrapulmonary pharmacokinetics of rifampicin, isoniazid, pyrazinamide, and ethambutol, and explore relationships with clinical treatment outcomes in patients with pulmonary tuberculosis. METHODS: Malawian adults with a first presentation of microbiologically-confirmed pulmonary tuberculosis received standard 6-month first-line therapy. Plasma and intrapulmonary samples were collected 8 and 16 weeks into treatment and drug concentrations measured in plasma, lung/airway epithelial lining fluid, and alveolar cells. Population pharmacokinetic modelling generated estimates of drug exposure (Cmax and AUC) from individual-level post-hoc Bayesian estimates of plasma and intrapulmonary pharmacokinetics. RESULTS: One-hundred-and-fifty-seven patients (58% HIV co-infected) participated. Despite standard weight-based dosing, peak plasma concentrations of first-line drugs were below therapeutic drug monitoring targets. Rifampicin concentrations were low in all three compartments. Isoniazid, pyrazinamide, and ethambutol achieved higher concentrations in epithelial lining fluid and alveolar cells than plasma. Isoniazid and pyrazinamide concentrations were 14.6 (95% CI: 11.2-18.0) and 49.8-fold (95% CI: 34.2-65.3) higher in lining fluid than plasma respectively. Ethambutol concentrations were highest in alveolar cells (alveolar cells:plasma ratio 15.0, 95% CI 11.4-18.6). Plasma or intrapulmonary pharmacokinetics did not predict clinical treatment response. CONCLUSIONS: We report differential drug concentrations between plasma and the lung. While plasma concentrations were below therapeutic monitoring targets, accumulation of drugs at the site of disease may explain the success of the first-line regimen. The low rifampicin concentrations observed in all compartments lend strong support for ongoing clinical trials of high-dose rifampicin regimens

    High intrapulmonary rifampicin and isoniazid concentrations are associated with rapid sputum bacillary clearance in patients with pulmonary tuberculosis

    Get PDF
    This work was supported by a Wellcome Trust Clinical PhD Fellowship [grant number 105392/B/14/Z to A.D.M. and L69AGB to JM]. ELC was supported by Wellcome [200901/Z/16/Z]. The Malawi-Liverpool-Wellcome Clinical Research Programme is supported by a strategic award from the Wellcome Trust [206545/Z/17/Z]. We also acknowledge infrastructural support for bioanalysis from the Liverpool Biomedical Research Centre funded by Liverpool Health Partners.Background Intrapulmonary pharmacokinetics may better explain response to tuberculosis (TB) treatment than plasma pharmacokinetics. We explored these relationships by modelling bacillary clearance in sputum in adult patients on first-line treatment in Malawi. Methods Bacillary elimination rates (BER) were estimated using linear mixed-effects modelling of serial time-to-positivity in mycobacterial growth indicator tubes for sputum collected during the intensive phase of treatment (weeks 0 to 8) for microbiologically confirmed TB. Population pharmacokinetic models used plasma and intrapulmonary drug levels at 8 and 16 weeks. Pharmacokinetic-pharmacodynamic relationships were investigated using individual-level measures of drug exposure (AUC and Cmax) for rifampicin, isoniazid, pyrazinamide, and ethambutol, in plasma, epithelial lining fluid, and alveolar cells as covariates in the bacillary elimination models. Results Among 157 participants (58% HIV co-infected), drug exposure in plasma or alveolar cells was not associated with sputum bacillary clearance. Higher peak concentrations (Cmax) or exposure (AUC) to rifampicin or isoniazid in epithelial lining fluid was associated with more rapid bacillary elimination and shorter time to sputum negativity. More extensive disease on baseline chest radiograph was associated with slower bacillary elimination. Clinical outcome was captured in 133 participants, with 15 (11%) unfavourable outcomes recorded (recurrent TB, failed treatment, or death). No relationship between BER and late clinical outcome was identified. Conclusions Greater intrapulmonary drug exposure to rifampicin or isoniazid in the epithelial lining fluid was associated with more rapid bacillary clearance. Higher doses of rifampicin and isoniazid may result in sustained high intrapulmonary drug exposure, rapid bacillary clearance, shorter treatment duration and better treatment outcomes.Publisher PDFPeer reviewe

    Interplay between the gut microbiome and typhoid fever: insights from endemic countries and a controlled human infection model

    Get PDF
    Background: Typhoid fever is a systemic infection caused by Salmonella enterica serovar Typhi (S. Typhi) invasion from the gut lumen. Transmission between people occurs through ingestion of contaminated food and water, particularly in settings with poor water and sanitation infrastructure, resulting in over 10 million illnesses annually. As the pathogen invades via the gastrointestinal tract, it is plausible that the gut microbiome may influence the outcome of S. Typhi exposure. There is some evidence that bacteria producing short-chain fatty acids (SCFAs) may create an environment unfavourable to invasive Salmonella, but data from humans is limited. Methods: To investigate the association between the gut microbiome and typhoid fever, we analysed samples collected from three all-age cohorts enrolled in a prospective surveillance study conducted across three settings where typhoid fever is endemic (Dhaka, Bangladesh; Blantyre, Malawi; and Kathmandu, Nepal). Cohorts consisted of acute typhoid fever patients (n = 92), asymptomatic household contacts of typhoid fever patients (representing individuals who were likely exposed to S. Typhi but did not develop the disease, n = 97) and asymptomatic serosurvey participants with high Vi antibody titres (representing individuals who were exposed to S. Typhi and may be carriers, n = 69). The stool microbiomes of each cohort were characterised using shotgun metagenomics, and bacterial diversity, composition and function were compared. Results: We identified 4 bacterial species that were significantly lower in abundance in typhoid fever patients compared with household contacts (i.e. probably exposed), in two of the three participant populations (Bangladesh and Malawi). These bacteria may represent taxa that provide protection against the development of clinical infection upon exposure to S. Typhi and include the inflammation-associated species Prevotella copri clade A and Haemophilus parainfluenzae. Our functional analysis identified 28 specific metabolic gene clusters (MGCs) negatively associated with typhoid fever in Bangladesh and Malawi, including seven MGCs involved in SCFA metabolism. The putative protection provided by microbiome SCFA metabolism was supported by data from a controlled human infection model conducted in a UK population, in which participants who did not develop typhoid fever following ingestion of S. Typhi had a higher abundance of a putative SCFA-metabolising MGC (q-value = 0.22). Conclusions: This study identified the same protective associations between taxonomic and functional microbiota characteristics and non-susceptibility to typhoid fever across multiple human populations. Future research should explore the potential functional role of SCFAs and inflammation-associated bacteria in resistance to S. Typhi and other enteric infections. 97DXLvPKfnW3vpzKZz3VMUVideo Abstrac

    New Policies, New Technologies: Modelling the Potential for Improved Smear Microscopy Services in Malawi

    Get PDF
    Background To quantify the likely impact of recent WHO policy recommendations regarding smear microscopy and the introduction of appropriate low-cost fluorescence microscopy on a) case detection and b) laboratory workload.Methodology/Principal Findings An audit of the laboratory register in an urban hospital, Lilongwe, Malawi, and the application of a simple modelling framework. The adoption of the new definition of a smear-positive case could directly increase case detection by up to 28%. Examining Ziehl-Neelsen (ZN) sputum smears for up to 10 minutes before declaring them negative has previously been shown to increase case detection (over and above that gained by the adoption of the new case definition) by 70% compared with examination times in routine practice. Three times the number of staff would be required to adequately examine the current workload of smears using ZN microscopy. Through implementing new policy recommendations and LED-based fluorescence microscopy the current laboratory staff complement could investigate the same number of patients, examining auramine-stained smears to an extent that is equivalent to a 10 minutes ZN smear examination.Conclusions/Significance Combined implementation of the new WHO recommendations on smear microscopy and LED-based fluorescence microscopy could result in substantial increases in smear positive case-detection using existing human resources and minimal additional equipment

    Pathogen diversity and antimicrobial resistance transmission of Salmonella enterica serovars Typhi and Paratyphi A in Bangladesh, Nepal, and Malawi: a genomic epidemiological study.

    Get PDF
    BACKGROUND: Enteric fever is a serious public health concern. The causative agents, Salmonella enterica serovars Typhi and Paratyphi A, frequently have antimicrobial resistance (AMR), leading to limited treatment options and poorer clinical outcomes. We investigated the genomic epidemiology, resistance mechanisms, and transmission dynamics of these pathogens at three urban sites in Africa and Asia. METHODS: S Typhi and S Paratyphi A bacteria isolated from blood cultures of febrile children and adults at study sites in Dhaka (Bangladesh), Kathmandu (Nepal), and Blantyre (Malawi) during STRATAA surveillance were sequenced. Isolates were charactered in terms of their serotypes, genotypes (according to GenoTyphi and Paratype), molecular determinants of AMR, and population structure. We used phylogenomic analyses incorporating globally representative genomic data from previously published surveillance studies and ancestral state reconstruction to differentiate locally circulating from imported pathogen AMR variants. Clusters of sequences without any single-nucleotide variants in their core genome were identified and used to explore spatiotemporal patterns and transmission dynamics. FINDINGS: We sequenced 731 genomes from isolates obtained during surveillance across the three sites between Oct 1, 2016, and Aug 31, 2019 (24 months in Dhaka and Kathmandu and 34 months in Blantyre). S Paratyphi A was present in Dhaka and Kathmandu but not Blantyre. S Typhi genotype 4.3.1 (H58) was common in all sites, but with different dominant variants (4.3.1.1.EA1 in Blantyre, 4.3.1.1 in Dhaka, and 4.3.1.2 in Kathmandu). Multidrug resistance (ie, resistance to chloramphenicol, co-trimoxazole, and ampicillin) was common in Blantyre (138 [98%] of 141 cases) and Dhaka (143 [32%] of 452), but absent from Kathmandu. Quinolone-resistance mutations were common in Dhaka (451 [>99%] of 452) and Kathmandu (123 [89%] of 138), but not in Blantyre (three [2%] of 141). Azithromycin-resistance mutations in acrB were rare, appearing only in Dhaka (five [1%] of 452). Phylogenetic analyses showed that most cases derived from pre-existing, locally established pathogen variants; 702 (98%) of 713 drug-resistant infections resulted from local circulation of AMR variants, not imported variants or recent de novo emergence; and pathogen variants circulated across age groups. 479 (66%) of 731 cases clustered with others that were indistinguishable by point mutations; individual clusters included multiple age groups and persisted for up to 2·3 years, and AMR determinants were invariant within clusters. INTERPRETATION: Enteric fever was associated with locally established pathogen variants that circulate across age groups. AMR infections resulted from local transmission of resistant strains. These results form a baseline against which to monitor the impacts of control measures. FUNDING: Wellcome Trust, Bill & Melinda Gates Foundation, EU Horizon 2020, and UK National Institute for Health and Care Research

    Evaluating the relationship between ciprofloxacin prescription and non-susceptibility in Salmonella Typhi in Blantyre, Malawi: an observational study

    Get PDF
    Background: Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi. Methods: We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month. Findings: From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8–7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4–10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre. Interpretation: We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance. Funding: Wellcome Trust, Bill & Melinda Gates Foundation, and National Institute for Health and Care Research (UK)

    Pathogen diversity and antimicrobial resistance transmission of Salmonella enterica serovars Typhi and Paratyphi A in Bangladesh, Nepal, and Malawi: a genomic epidemiological study

    Get PDF
    Background Enteric fever is a serious public health concern. The causative agents, Salmonella enterica serovars Typhi and Paratyphi A, frequently have antimicrobial resistance (AMR), leading to limited treatment options and poorer clinical outcomes. We investigated the genomic epidemiology, resistance mechanisms, and transmission dynamics of these pathogens at three urban sites in Africa and Asia. Methods S Typhi and S Paratyphi A bacteria isolated from blood cultures of febrile children and adults at study sites in Dhaka (Bangladesh), Kathmandu (Nepal), and Blantyre (Malawi) during STRATAA surveillance were sequenced. Isolates were charactered in terms of their serotypes, genotypes (according to GenoTyphi and Paratype), molecular determinants of AMR, and population structure. We used phylogenomic analyses incorporating globally representative genomic data from previously published surveillance studies and ancestral state reconstruction to differentiate locally circulating from imported pathogen AMR variants. Clusters of sequences without any single-nucleotide variants in their core genome were identified and used to explore spatiotemporal patterns and transmission dynamics. Findings We sequenced 731 genomes from isolates obtained during surveillance across the three sites between Oct 1, 2016, and Aug 31, 2019 (24 months in Dhaka and Kathmandu and 34 months in Blantyre). S Paratyphi A was present in Dhaka and Kathmandu but not Blantyre. S Typhi genotype 4.3.1 (H58) was common in all sites, but with different dominant variants (4.3.1.1.EA1 in Blantyre, 4.3.1.1 in Dhaka, and 4.3.1.2 in Kathmandu). Multidrug resistance (ie, resistance to chloramphenicol, co-trimoxazole, and ampicillin) was common in Blantyre (138 [98%] of 141 cases) and Dhaka (143 [32%] of 452), but absent from Kathmandu. Quinolone-resistance mutations were common in Dhaka (451 [>99%] of 452) and Kathmandu (123 [89%] of 138), but not in Blantyre (three [2%] of 141). Azithromycin-resistance mutations in acrB were rare, appearing only in Dhaka (five [1%] of 452). Phylogenetic analyses showed that most cases derived from pre-existing, locally established pathogen variants; 702 (98%) of 713 drug-resistant infections resulted from local circulation of AMR variants, not imported variants or recent de novo emergence; and pathogen variants circulated across age groups. 479 (66%) of 731 cases clustered with others that were indistinguishable by point mutations; individual clusters included multiple age groups and persisted for up to 2·3 years, and AMR determinants were invariant within clusters. Interpretation Enteric fever was associated with locally established pathogen variants that circulate across age groups. AMR infections resulted from local transmission of resistant strains. These results form a baseline against which to monitor the impacts of control measures. Funding Wellcome Trust, Bill & Melinda Gates Foundation, EU Horizon 2020, and UK National Institute for Health and Care Research

    Evaluating the relationship between ciprofloxacin prescription and non-susceptibility in Salmonella Typhi in Blantyre, Malawi: an observational study

    Get PDF
    Background Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi. Methods We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month. Findings From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8–7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4–10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre. Interpretation We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance
    corecore