2,563 research outputs found

    Spontaneous Polarisation Build up in a Room Temperature Polariton Laser

    Full text link
    We observe the build up of strong (~50%) spontaneous vector polarisation in emission from a GaN-based polariton laser excited by short optical pulses at room temperature. The Stokes vector of emitted light changes its orientation randomly from one excitation pulse to another, so that the time-integrated polarisation remains zero. This behaviour is completely different to any previous laser. We interpret this observation in terms of the spontaneous symmetry breaking in a Bose-Einstein condensate of exciton-polaritons

    Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels

    Get PDF
    Molecular dynamics calculations are used to provide a self-consistent prediction of the elastic, thermal expansion and oxygen self-diffusion properties of mixed oxide nuclear fuels at arbitrary compositions.</p

    Bitopic binding mode of an M1 muscarinic acetylcholine receptor agonist associated with adverse clinical trial outcomes

    Get PDF
    The realisation of the therapeutic potential of targeting the M1 muscarinic acetylcholine receptor (M1 mAChR) for the treatment of cognitive decline in Alzheimer's disease has prompted the discovery of M1 mAChR ligands showing efficacy in alleviating cognitive dysfunction in both rodents and humans. Among these is GSK1034702, described previously as a potent M1 receptor allosteric agonist, which showed pro-cognitive effects in rodents and improved immediate memory in a clinical nicotine withdrawal test but induced significant side-effects. Here we provide evidence using ligand binding, chemical biology and functional assays to establish that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic manner at the M1 mAChR such that it can concomitantly span both the orthosteric and an allosteric binding site. The bitopic nature of GSK1034702 together with the intrinsic agonist activity and a lack of muscarinic receptor subtype selectivity reported here, all likely contribute to the adverse effects of this molecule in clinical trials. We conclude that these properties, whilst imparting beneficial effects on learning and memory, are undesirable in a clinical candidate due to the likelihood of adverse side effects. Rather, our data supports the notion that "pure" positive allosteric modulators showing selectivity for the M1 mAChR with low levels of intrinsic activity would be preferable to provide clinical efficacy with low adverse responses

    On the hierarchical classification of G Protein-Coupled Receptors

    Get PDF
    Motivation: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. Results: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases

    On the Application of a Monolithic Array for Detecting Intensity-Correlated Photons Emitted by Different Source Types

    Full text link
    It is not widely appreciated that many subtleties are involved in the accurate measurement of intensity-correlated photons; even for the original experiments of Hanbury Brown and Twiss (HBT). Using a monolithic 4x4 array of single-photon avalanche diodes (SPADs), together with an off-chip algorithm for processing streaming data, we investigate the difficulties of measuring second-order photon correlations g2 in a wide variety of light fields that exhibit dramatically different correlation statistics: a multimode He-Ne laser, an incoherent intensity-modulated lamp-light source and a thermal light source. Our off-chip algorithm treats multiple photon-arrivals at pixel-array pairs, in any observation interval, with photon fluxes limited by detector saturation, in such a way that a correctly normalized g2 function is guaranteed. The impact of detector background correlations between SPAD pixels and afterpulsing effects on second-order coherence measurements is discussed. These results demonstrate that our monolithic SPAD array enables access to effects that are otherwise impossible to measure with stand-alone detectors.Comment: 17 pages, 6 figure

    A bio-inspired image coder with temporal scalability

    Full text link
    We present a novel bio-inspired and dynamic coding scheme for static images. Our coder aims at reproducing the main steps of the visual stimulus processing in the mammalian retina taking into account its time behavior. The main novelty of this work is to show how to exploit the time behavior of the retina cells to ensure, in a simple way, scalability and bit allocation. To do so, our main source of inspiration will be the biologically plausible retina model called Virtual Retina. Following a similar structure, our model has two stages. The first stage is an image transform which is performed by the outer layers in the retina. Here it is modelled by filtering the image with a bank of difference of Gaussians with time-delays. The second stage is a time-dependent analog-to-digital conversion which is performed by the inner layers in the retina. Thanks to its conception, our coder enables scalability and bit allocation across time. Also, our decoded images do not show annoying artefacts such as ringing and block effects. As a whole, this article shows how to capture the main properties of a biological system, here the retina, in order to design a new efficient coder.Comment: 12 pages; Advanced Concepts for Intelligent Vision Systems (ACIVS 2011

    Towards the “ultimate earthquake-proof” building: Development of an integrated low-damage system

    Get PDF
    The 2010–2011 Canterbury earthquake sequence has highlighted the severe mismatch between societal expectations over the reality of seismic performance of modern buildings. A paradigm shift in performance-based design criteria and objectives towards damage-control or low-damage design philosophy and technologies is urgently required. The increased awareness by the general public, tenants, building owners, territorial authorities as well as (re)insurers, of the severe socio-economic impacts of moderate-strong earthquakes in terms of damage/dollars/ downtime, has indeed stimulated and facilitated the wider acceptance and implementation of cost-efficient damage-control (or low-damage) technologies. The ‘bar’ has been raised significantly with the request to fast-track the development of what the wider general public would hope, and somehow expect, to live in, i.e. an “earthquake-proof” building system, capable of sustaining the shaking of a severe earthquake basically unscathed. The paper provides an overview of recent advances through extensive research, carried out at the University of Canterbury in the past decade towards the development of a low-damage building system as a whole, within an integrated performance-based framework, including the skeleton of the superstructure, the non-structural components and the interaction with the soil/foundation system. Examples of real on site-applications of such technology in New Zealand, using concrete, timber (engineered wood), steel or a combination of these materials, and featuring some of the latest innovative technical solutions developed in the laboratory are presented as examples of successful transfer of performance-based seismic design approach and advanced technology from theory to practice

    Single vortex-antivortex pair in an exciton polariton condensate

    Full text link
    In a homogeneous two-dimensional system at non-zero temperature, although there can be no ordering of infinite range, a superfluid phase is predicted for a Bose liquid. The stabilization of phase in this superfluid regime is achieved by the formation of bound vortex-antivortex pairs. It is believed that several different systems share this common behaviour, when the parameter describing their ordered state has two degrees of freedom, and the theory has been tested for some of them. However, there has been no direct experimental observation of the phase stabilization mechanism by a bound pair. Here we present an experimental technique that can identify a single vortex-antivortex pair in a two-dimensional exciton polariton condensate. The pair is generated by the inhomogeneous pumping spot profile, and is revealed in the time-integrated phase maps acquired using Michelson interferometry, which show that the condensate phase is only locally disturbed. Numerical modelling based on open dissipative Gross-Pitaevskii equation suggests that the pair evolution is quite different in this non-equilibrium system compared to atomic condensates. Our results demonstrate that the exciton polariton condensate is a unique system for studying two-dimensional superfluidity in a previously inaccessible regime
    corecore