1,534 research outputs found

    The epe-d two year timer

    Get PDF
    Solid state timing apparatus to disconnect solar cells from batteries after two year perio

    Self-field effects upon the critical current density of flat superconducting strips

    Full text link
    We develop a general theory to account self-consistently for self-field effects upon the average transport critical current density Jc of a flat type-II superconducting strip in the mixed state when the bulk pinning is characterized by a field-dependent depinning critical current density Jp(B), where B is the local magnetic flux density. We first consider the possibility of both bulk and edge-pinning contributions but conclude that bulk pinning dominates over geometrical edge-barrier effects in state-of-the-art YBCO films and prototype second-generation coated conductors. We apply our theory using the Kim model, JpK(B) = JpK(0)/(1+|B|/B0), as an example. We calculate Jc(Ba) as a function of a perpendicular applied magnetic induction Ba and show how Jc(Ba) is related to JpK(B). We find that Jc(Ba) is very nearly equal to JpK(Ba) when Ba > Ba*, where Ba* is the value of Ba that makes the net flux density zero at the strip's edge. However, Jc(Ba) is suppressed relative to JpK(Ba) at low fields when Ba < Ba*, with the largest suppression occurring when Ba*/B0 is of order unity or larger.Comment: 9 pages, 4 figures, minor revisions to add four reference

    Flux domes in superconducting films without edges

    Full text link
    Domelike magnetic-flux-density distributions previously have been observed experimentally and analyzed theoretically in superconducting films with edges, such as in strips and thin plates. Such flux domes have been explained as arising from a combination of strong geometric barriers and weak bulk pinning. In this paper we predict that, even in films with bulk pinning, flux domes also occur when vortices and antivortices are produced far from the film edges underneath current-carrying wires, coils, or permanent magnets placed above the film. Vortex-antivortex pairs penetrating through the film are generated when the magnetic field parallel to the surface exceeds H_{c1}+K_c, where H_{c1} is the lower critical field and K_c = j_c d is the critical sheet-current density (the product of the bulk critical current density j_c and the film thickness d). The vortices and antivortices move in opposite directions to locations where they join others to create separated vortex and antivortex flux domes. We consider a simple arrangement of a pair of current-carrying wires carrying current I_0 in opposite directions and calculate the magnetic-field and current-density distributions as a function of I_0 both in the bulk-pinning-free case (K_c = 0) and in the presence of bulk pinning, characterized by a field-independent critical sheet-current density (K_c > 0).Comment: 15 pages, 23 figure

    Detection of the Vortex Dynamic Regimes in MgB2 by Third Harmonic AC Susceptibility Measurements

    Full text link
    In a type-II superconductor the generation of higher harmonics in the magnetic response to an alternating magnetic field is a consequence of the non-linearity in the I-V relationship. The shape of the current-voltage (I-V) curve is determined by the current dependence of the thermal activation energy U(J) and is thus related to the dynamical regimes governing the vortex motion. In order to investigate the vortex dynamics in MgB2 bulk superconductors we have studied the fundamental (chi1) and third (chi3) harmonics of the ac magnetic susceptibility. Measurements have been performed as a function of the temperature and the dc magnetic field, up to 9 T, for various frequencies and amplitudes of the ac field. We show that the analysis of the behaviour in frequency of chi3(T) and chi3(B) curves can provide clear information about the non-linearity in different regions of the I-V characteristic. By comparing the experimental curves with numerical simulations of the non-linear diffusion equation for the magnetic field we are able to resolve the crossover between a dissipative regime governed by flux creep and one dominated by flux flow phenomena.Comment: to be published in "Horizons in Superconductivity Research" (Nova Science Publishers, Inc., NY, 2003

    TeV Gamma Rays from Geminga and the Origin of the GeV Positron Excess

    Get PDF
    The Geminga pulsar has long been one of the most intriguing MeV-GeV gamma-ray point sources. We examine the implications of the recent Milagro detection of extended, multi-TeV gamma-ray emission from Geminga, finding that this reveals the existence of an ancient, powerful cosmic-ray accelerator that can plausibly account for the multi-GeV positron excess that has evaded explanation. We explore a number of testable predictions for gamma-ray and electron/positron experiments (up to ~100 TeV) that can confirm the first "direct" detection of a cosmic-ray source.Comment: 4 pages and 3 figures; Minor revisions, accepted for publication in Physical Review Letter

    Determination of the critical current density in the d-wave superconductor YBCO under applied magnetic fields by nodal tunneling

    Full text link
    We have studied nodal tunneling into YBa2Cu3O7-x (YBCO) films under magnetic fields. The films' orientation was such that the CuO2 planes were perpendicular to the surface with the a and b axis at 450 form the normal. The magnetic field was applied parallel to the surface and perpendicular to the CuO2 planes. The Zero Bias Conductance Peak (ZBCP) characteristic of nodal tunneling splits under the effect of surface currents produced by the applied fields. Measuring this splitting under different field conditions, zero field cooled and field cooled, reveals that these currents have different origins. By comparing the field cooled ZBCP splitting to that taken in decreasing fields we deduce a value of the Bean critical current superfluid velocity, and calculate a Bean critical current density of up to 3*10^7 A/cm2 at low temperatures. This tunneling method for the determination of critical currents under magnetic fields has serious advantages over the conventional one, as it avoids having to make high current contacts to the sample.Comment: 8 pages, 2 figure

    Josephson junctions in thin and narrow rectangular superconducting strips

    Full text link
    I consider a Josephson junction crossing the middle of a thin rectangular superconducting strip of length L and width W subjected to a perpendicular magnetic induction B. I calculate the spatial dependence of the gauge-invariant phase difference across the junction and the resulting B dependence of the critical current Ic(B).Comment: 4 pages, 6 figures, revised following referee's comment

    Geometry-dependent critical currents in superconducting nanocircuits

    Full text link
    In this paper we calculate the critical currents in thin superconducting strips with sharp right-angle turns, 180-degree turnarounds, and more complicated geometries, where all the line widths are much smaller than the Pearl length Λ=2λ2/d\Lambda = 2 \lambda^2/d. We define the critical current as the current that reduces the Gibbs free-energy barrier to zero. We show that current crowding, which occurs whenever the current rounds a sharp turn, tends to reduce the critical current, but we also show that when the radius of curvature is less than the coherence length this effect is partially compensated by a radius-of-curvature effect. We propose several patterns with rounded corners to avoid critical-current reduction due to current crowding. These results are relevant to superconducting nanowire single-photon detectors, where they suggest a means of improving the bias conditions and reducing dark counts. These results also have relevance to normal-metal nanocircuits, as these patterns can reduce the electrical resistance, electromigration, and hot spots caused by nonuniform heating.Comment: 29 pages, 24 figure
    corecore