212 research outputs found
Genes in the postgenomic era
We outline three very different concepts of the gene - 'instrumental', 'nominal', and 'postgenomic'. The instrumental gene has a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. The nominal gene is a critical practical tool, allowing stable communication between bioscientists in a wide range of fields grounded in well-defined sequences of nucleotides, but this concept does not embody major theoretical insights into genome structure or function. The post-genomic gene embodies the continuing project of understanding how genome structure supports genome function, but with a deflationary picture of the gene as a structural unit. This final concept of the gene poses a significant challenge to conventional assumptions about the relationship between genome structure and function, and between genotype and phenotype
Purification and biochemical properties of a high-molecular-mass inositol 1,4,5-trisphosphate 3-kinase isoenzyme in human platelets
P2Y1 receptor modulation of endogenous ion channel function in Xenopus oocytes: Involvement of transmembrane domains
Agonist activation of the hP2Y1 receptor expressed in Xenopus oocytes stimulated an endogenous voltage-gated ion channel, previously identified as the transient inward (Tin) channel. When human P2Y1 (hP2Y1) and skate P2Y (sP2Y) receptors were expressed in Xenopus oocytes, time-to-peak values (a measure of the response to membrane hyperpolarization) of the Tin channel were significantly reduced compared to oocytes expressing the hB1-bradykinin receptor or the rat M1-muscarinic (rM1) receptor. Differences in activation were also observed in the Tin currents elicited by various P2Y receptor subtypes. The time-to-peak values of the Tin channel in oocytes expressing the hP2Y4, hP2Y11, or hB1-bradykinin receptors were similar, whereas the channel had significantly shorter time-to-peak values in oocytes expressing either the hP2Y1 or sP2Y receptor. Amino acid substitutions at His-132, located in the third transmembrane domain (TM3) of the hP2Y1 receptor, delayed the onset of channel opening, but not the kinetics of the activation process. In addition, Zn2+ sensitivity was also dependent on the subtype of P2Y receptor expressed. Replacement of His-132 in the hP2Y1 receptor with either Ala or Phe increased Zn2+ sensitivity of the Tin current. In contrast, truncation of the C-terminal region of the hP2Y1 receptor had no affect on activation or Zn2+ sensitivity of the Tin channel. These results suggested that TM3 in the hP2Y1 receptor was involved in modulating ion channel function and blocker pharmacology of the Tin channel
Inhibition of the inositol kinase Itpkb augments calcium signaling in lymphocytes and reveals a novel strategy to treat autoimmune disease
Emerging approaches to treat immune disorders target positive regulatory kinases downstream of antigen receptors with small molecule inhibitors. Here we provide evidence for an alternative approach in which inhibition of the negative regulatory inositol kinase Itpkb in mature T lymphocytes results in enhanced intracellular calcium levels following antigen receptor activation leading to T cell death. Using Itpkb conditional knockout mice and LMW Itpkb inhibitors these studies reveal that Itpkb through its product IP4 inhibits the Orai1/Stim1 calcium channel on lymphocytes. Pharmacological inhibition or genetic deletion of Itpkb results in elevated intracellular Ca2+ and induction of FasL and Bim resulting in T cell apoptosis. Deletion of Itpkb or treatment with Itpkb inhibitors blocks T-cell dependent antibody responses in vivo and prevents T cell driven arthritis in rats. These data identify Itpkb as an essential mediator of T cell activation and suggest Itpkb inhibition as a novel approach to treat autoimmune disease
P2Y2 and P2Y6 receptor activation elicits intracellular calcium responses in human adipose-derived mesenchymal stromal cells
Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs). The purpose of this study was to undertake a comprehensive analysis of purinergic receptor expression. Mesenchymal stromal cells were isolated from human subcutaneous adipose tissue and confirmed by flow cytometry. The expression profile of purinergic receptors was determined by quantitative real-time PCR and immunocytochemistry. The molecular basis for adenine and uracil nucleotide-evoked intracellular calcium responses was determined using Fura-2 measurements. All the known subtypes of P2X and P2Y receptors, excluding P2X2, P2X3 and P2Y12 receptors, were detected at the mRNA and protein level. ATP, ADP and UTP elicited concentration-dependent calcium responses in mesenchymal cells (N = 7–9 donors), with a potency ranking ADP (EC50 1.3 ± 1.0 μM) > ATP (EC50 2.2 ± 1.1 μM) = UTP (3.2 ± 2.8 μM). Cells were unresponsive to UDP (< 30 μM) and UDP-glucose (< 30 μM). ATP responses were attenuated by selective P2Y2 receptor antagonism (AR-C118925XX; IC50 1.1 ± 0.8 μM, 73.0 ± 8.5% max inhibition; N = 7 donors), and UTP responses were abolished. ADP responses were attenuated by the selective P2Y6 receptor antagonist, MRS2587 (IC50 437 ± 133nM, 81.0 ± 8.4% max inhibition; N = 6 donors). These data demonstrate that adenine and uracil nucleotides elicit intracellular calcium responses in human AD-MSCs with a predominant role for P2Y2 and P2Y6 receptor activation. This study furthers understanding about how human adipose-derived mesenchymal stromal cells can respond to external signalling cues
AMP-activated protein kinase controls liposaccharide-induced hyperpermeability
Organ dysfunction determines the severity of sepsis and is correlated to mortality. Endothelial increased permeability contributes to the development of organ failure. AMP-activated protein kinase (AMPK) has been shown to modulate cytoskeleton and could mediate endothelial permeability. Our hypothesis is that AMPK controls sepsis-induced hyperpermeability in the heart and is involved in septic cardiomyopathy. Sepsis was induced by intraperitoneal injection of liposaccharide, 10 mg/kg (LPS). Alpha-1 AMPK knockout mice (α1KO) were compared with wild-type. Vascular permeability was characterized by Evans blue extravasation. Inflammatory cytokine mRNA expression was determined by qPCR analysis. Left ventricular mass was assessed by echocardiography. In addition, to emphasize the beneficial role of AMPK on heart vascular permeability, AMPK activator (acadesine) was administered to C57Bl6 mice before LPS injection. The ANOVA test with Bonferroni's post hoc test and the log-rank test were used. P < 0.05 was considered as significant. Increased cardiac vascular permeability was observed in the LPS group in comparison to untreated animals (2.5% vs. 16%; P < 0.05). The α1KO mice exhibited an increase vascular permeability after LPS injection in comparison to wild-type mice (41.5% vs. 16%; P < 0.05). α1KO animals had a significant mortality increase after LPS injection (70% vs. 10%; P < 0.05). LPS markedly induced the production of proinflammatory cytokines (TNFα, IL-1β, IL-6) that were significantly higher in the α1KO animals. More importantly, LPS treatment leads to an increased left ventricular mass in the α1KO mice within 24 hours, suggesting the onset of edema. Finally LPS-induced vascular hyperpermeability was greatly reduced after AMPK activation by acadesine (13.2% vs. 40%; P < 0.05). AMPK importantly regulates cardiac vascular permeability and could control the sepsis-induced cardiomyopathy. AMPK could represent a new pharmacological target of sepsis
The P2Y4 receptor forms homo-oligomeric complexes in several CNS and PNS neuronal cells
It is well established that several cell surface receptors interact with each other to form dimers and oligomers, which are essential for their activation. Since little is known about the quaternary structure of P2Y receptors, in the present work, we investigated the expression of the G-protein-coupled P2Y4 subunit as monomeric or higher-order complex protein. We examined both endogenously expressed P2Y4 subtype with the aid of specific anti-P2Y4 antiserum, and heterologously transfected P2Y4-tagged receptors with the use of antitag antibodies. In both cases, we found the P2Y4 receptor displaying molecular masses corresponding to monomeric, dimeric and oligomeric structures. Experiments performed in the absence of reducing agents demonstrated that there is a strict correlation among the multiple protein bands and that the multimeric forms are at least partially assembled by disulphide bonds. The direct demonstration of P2Y4 homodimerisation comes instead from co–transfection and differential co–immunoprecipitation experiments, with the use of differently tagged P2Y4 receptors and antitag antibodies. The structural propensity of the P2Y4 protein to form homo-oligomers may open the possibility of a novel regulatory mechanism of physiopathological functions for this and additional P2Y receptors
Functional and molecular evidence for heteromeric association of P2Y1 receptor with P2Y2 and P2Y4 receptors in mouse granulocytes
BACKGROUND: All hematopoietic cells express P2 receptors, however pharmacological characteristics such as expression and affinity in granulocytes are unknown. METHODS: Pharmacological characteristics of P2 receptors were evaluated by Ca(2+) measurements using Fura-2 fluorophore. P2 receptors expression were analyzed by flow cytometry and RT-PCR. P2 interaction were shown by coimmunoprecipitation, western blotting and FRET. RESULTS: Granulocytes were responsive to P2Y agonists, whereas P2X agonists were ineffective. Ca(2+) increase, elicited by ADP and UTP was dependent on intracellular stocks and sensitive to G-coupled receptor inhibition. Moreover, MRS2179, a specific antagonist of the P2Y(1) receptor, abolished ADP response. Interestingly, ADP and UTP exhibited full heterologous desensitization, suggesting that these agonists interact with the same receptor. The heteromeric association between P2Y(1) receptor and the P2Y(2) and P2Y(4) receptors was shown by immunoprecipitation and FRET analysis. CONCLUSION: Clear evidence of heteromeric association of P2Y receptors was found during the evaluation of P2 receptors present in mice granulocytes, which could impact in the classical pharmacology of P2Y receptors in granulocytes
- …
