4,899 research outputs found
X-ray absorption spectra at the Ca-L-edge calculated within multi-channel multiple scattering theory
We report a new theoretical method for X-ray absorption spectroscopy (XAS) in
condensed matter which is based on the multi-channel multiple scattering theory
of Natoli et al. and the eigen-channel R-matrix method. While the highly
flexible real-space multiple scattering (RSMS) method guarantees a precise
description of the single-electron part of the problem, multiplet-like electron
correlation effects between the photo-electron and localized electrons can be
taken account for in a configuration interaction scheme. For the case where
correlation effects are limited to the absorber atom, a technique for the
solution of the equations is devised, which requires only little more
computation time than the normal RSMS method for XAS. The new method is
described and an application to XAS at the Ca -edge in bulk Ca, CaO
and CaF is presented.Comment: 10 pages, 4 figures, submitted to Phys. Rev.
ATPMN: accurate positions and flux densities at 5 and 8 GHz for 8,385 sources from the PMN survey
We present a source catalogue of 9,040 radio sources resulting from
high-resolution observations of 8,385 PMN sources with the Australia Telescope
Compact Array. The catalogue lists flux density and structural measurements at
4.8 and 8.6 GHz, derived from observations of all PMN sources in the
declination range -87 deg < delta < -38.5 deg (exclusive of galactic latitudes
|b| 70 mJy (50 mJy south of delta = -73
deg). We assess the quality of the data, which was gathered in 1992-1994,
describe the population of catalogued sources, and compare it to samples from
complementary catalogues. In particular we find 127 radio sources with probable
association with gamma-ray sources observed by the orbiting Fermi Large Area
Telescope.Comment: 20 pages, 21 figure
Relation between dust and radio luminosity in optically selected early type galaxies
We have surveyed an optical/IR selected sample of nearby E/S0 galaxies with
and without nuclear dust structures with the VLA at 3.6 cm to a sensitivity of
100 Jy. We can construct a Radio Luminosity Function (RLF) of these
galaxies to ~10^19 W/Hz and find that ~50% of these galaxies have AGNs at this
level. The space density of these AGNs equals that of starburst galaxies at
this luminosity. Several dust-free galaxies have low luminosity radio cores,
and their RLF is not significantly less than that of the dusty galaxies.Comment: 8 pages, 5 figures, accepted for publication in A&
Status of NASA/Army rotorcraft research and development piloted flight simulation
The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility
Resolving the Radio Source Background: Deeper Understanding Through Confusion
We used the Karl G. Jansky Very Large Array (VLA) to image one primary beam
area at 3 GHz with 8 arcsec FWHM resolution and 1.0 microJy/beam rms noise near
the pointing center. The P(D) distribution from the central 10 arcmin of this
confusion-limited image constrains the count of discrete sources in the 1 <
S(microJy/beam) < 10 range. At this level the brightness-weighted differential
count S^2 n(S) is converging rapidly, as predicted by evolutionary models in
which the faintest radio sources are star-forming galaxies; and ~96$% of the
background originating in galaxies has been resolved into discrete sources.
About 63% of the radio background is produced by AGNs, and the remaining 37%
comes from star-forming galaxies that obey the far-infrared (FIR) / radio
correlation and account for most of the FIR background at lambda = 160 microns.
Our new data confirm that radio sources powered by AGNs and star formation
evolve at about the same rate, a result consistent with AGN feedback and the
rough correlation of black hole and bulge stellar masses. The confusion at
centimeter wavelengths is low enough that neither the planned SKA nor its
pathfinder ASKAP EMU survey should be confusion limited, and the ultimate
source detection limit imposed by "natural" confusion is < 0.01 microJy at 1.4
GHz. If discrete sources dominate the bright extragalactic background reported
by ARCADE2 at 3.3 GHz, they cannot be located in or near galaxies and most are
< 0.03 microJy at 1.4 GHz.Comment: 28 pages including 16 figures. ApJ accepted for publicatio
Causal and stable reduced-order model for linear high-frequency systems
With the ever-growing complexity of high-frequency systems in the electronic industry, formation of reduced-order models of these systems is paramount. In this reported work, two different techniques are combined to generate a stable and causal representation of the system. In particular, balanced truncation is combined with a Fourier series expansion approach. The efficacy of the proposed combined method is shown with an example
Direct tunneling delay time measurement in an optical lattice
We report on the measurement of the time required for a wave packet to tunnel
through the potential barriers of an optical lattice. The experiment is carried
out by loading adiabatically a Bose-Einstein condensate into a 1D optical
lattice. A sudden displacement of the lattice by a few tens of nm excites the
micromotion of the dipole mode. We then directly observe in momentum space the
splitting of the wave packet at the turning points and measure the delay
between the reflected and the tunneled packets for various initial
displacements. Using this atomic beam splitter twice, we realize a chain of
coherent micron-size Mach-Zehnder interferometers at the exit of which we get
essentially a wave packet with a negative momentum, a result opposite to the
prediction of classical physics
SU(3) Clebsch-Gordan Coefficients for Baryon-Meson Coupling at Arbitrary N_c
We present explicit formulae for the SU(3) Clebsch-Gordan coefficients that
are relevant for the couplings of large N_c baryons to mesons. In particular,
we compute the Clebsch-Gordan series for the coupling of the octet (associated
with mesons, and remains the correct representation at large N_c) to the large
N_c analogs of the baryon octet and decuplet representations.Comment: 8 pages, no figures, ReVTe
Quasars in the MAMBO blank field survey
Our MAMBO 1.2 mm blank field imaging survey of ~0.75 sqd has uncovered four
unusually bright sources, with flux densities between 10 and 90 mJy, all
located in the Abell 2125 field. The three brightest are flat spectrum radio
sources with bright optical and X-ray counterparts. Their mm and radio flux
densities are variable on timescales of months. Their X-ray luminosities
classify them as quasars. The faintest of the four mm bright sources appears to
be a bright, radio-quiet starburst at z~3, similar to the sources seen at lower
flux densities in the MAMBO and SCUBA surveys. It may also host a mildly
obscured AGN of quasar-like X-ray luminosity. The three non-thermal mm sources
imply an areal density of flat spectrum radio sources higher by at least 7
compared with that expected from an extrapolation of the lower frequency radio
number counts.Comment: 8 pages, 7 figures. Accepted for publication by A&
- …
