3,075 research outputs found
Recommended from our members
Representing chord sequences in OWL
Chord symbols and progressions are a common way to describe musical harmony. In this paper we present SEQ, a pattern representation using the Web Ontology Language OWL DL and its application to modelling chord sequences. SEQ provides a logical representation of order information, which is not available directly in OWL DL, together with an intuitive notation. It therefore allows the use of OWL reasoners for tasks such as classification of sequences by patterns and determining subsumption relationships between the patterns. The SEQ representation is used to express distinctive pattern obtained using data mining of multiple viewpoints of chord sequences
Genomic stability in response to high versus low linear energy transfer radiation in Arabidopsis thaliana.
Low linear energy transfer (LET) gamma rays and high LET HZE (high atomic weight, high energy) particles act as powerful mutagens in both plants and animals. DNA damage generated by HZE particles is more densely clustered than that generated by gamma rays. To understand the genetic requirements for resistance to high versus low LET radiation, a series of Arabidopsis thaliana mutants were exposed to either 1GeV Fe nuclei or gamma radiation. A comparison of effects on the germination and subsequent growth of seedlings led us to conclude that the relative biological effectiveness (RBE) of the two types of radiation (HZE versus gamma) are roughly 3:1. Similarly, in wild-type lines, loss of somatic heterozygosity was induced at an RBE of about a 2:1 (HZE versus gamma). Checkpoint and repair defects, as expected, enhanced sensitivity to both agents. The "replication fork" checkpoint, governed by ATR, played a slightly more important role in resistance to HZE-induced mutagenesis than in resistance to gamma induced mutagenesis
Generating structured music for bagana using quality metrics based on Markov models.
This research is partially supported by the project Lrn2Cre8 which acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET Grant No. 610859
Liquid Crystals with Patterned Molecular Orientation as an Electrolytic Active Medium
Transport of fluids and particles at the microscale is an important theme
both in fundamental and applied science. One of the most successful approaches
is to use an electric field, which requires the system to carry or induce
electric charges. We describe a versatile approach to generate electrokinetic
flows by using a liquid crystal (LC) with surface-patterned molecular
orientation as an electrolyte. The surface patterning is produced by
photo-alignment. In the presence of an electric field, the spatially varying
orientation induces space charges that trigger flows of the LC. The active
patterned LC electrolyte converts the electric energy into the LC flows and
transport of embedded particles of any type (fluid, solid, gaseous) along a
predesigned trajectory, posing no limitation on the electric nature (charge,
polarizability) of these particles and interfaces. The patterned LC electrolyte
exhibits a quadratic field dependence of the flow velocities; it induces
persistent vortices of controllable rotation speed and direction that are
quintessential for micro- and nanoscale mixing applications.Comment: 35 pages, 10 figure
Scaffolding School Pupils’ Scientific Argumentation with Evidence-Based Dialogue Maps
This chapter reports pilot work investigating the potential of Evidence-based Dialogue Mapping to scaffold young teenagers’ scientific argumentation. Our research objective is to better understand pupils’ usage of dialogue maps created in Compendium to write scientific ex-planations. The participants were 20 pupils, 12-13 years old, in a summer science course for “gifted and talented” children in the UK. Through qualitative analysis of three case studies, we investigate the value of dialogue mapping as a mediating tool in the scientific reasoning process during a set of learning activities. These activities were published in an online learning envi-ronment to foster collaborative learning. Pupils mapped their discussions in pairs, shared maps via the online forum and in plenary discussions, and wrote essays based on their dialogue maps. This study draws on these multiple data sources: pupils’ maps in Compendium, writings in science and reflective comments about the uses of mapping for writing. Our analysis highlights the diversity of ways, both successful and unsuccessful, in which dialogue mapping was used by these young teenagers
High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core "DSB" response specific to clastogenic treatments.
Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as "collateral" damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe(26+) high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5-24 h after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the "DSB response" were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 h post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 h after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing "extended night." This response was not apparent in gamma-irradiated plants
- …
